期刊文献+

基于不动点理论的微分系统解的有界性与实用稳定性

Boundedness and Practical Stability for Differential Systems Based on Fixed Point Theory
下载PDF
导出
摘要 使用推广了的Gronwall-Bellman不等式,结合Leray-Schauder不动点定理研究了一类微分方程解的存在性与有界性问题,获得了一些新的充分性条件,所得结果推广并改进了已有文献中的一些结论;并运用Leray-Schauder不动点理论探讨了系统在给定区间上的实用稳定性问题,克服了传统方法中构造Lia-punov函数的困难,进而得到了一些系统实用稳定性的充分条件. The existence and boundedness of solutions for a kind of differential system are studied by using the extended Gronwall-Bellman's inequality and Leray-Schauder's fixed point theorem.Some new sufficient conditions are obtained.The known results in the literature are extended and improved.The pratical stability of the solutions for the differential system on the given interval are studied by Leray-Schauder's fixed theorem,which overcome the difficulties of constructing the Liapunov function in the traditional method,and some new conditions for the practical stability are obtained.
作者 杨涛 周英告
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期296-299,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10771215)资助项目
关键词 LERAY-SCHAUDER不动点定理 GRONWALL-BELLMAN不等式 有界性 实用稳定性 Leray-Schauder's fixed point theorem Gronwall-Bellman's inequality boundedness practical stability
  • 相关文献

参考文献12

二级参考文献27

  • 1蹇继贵,万新敏.关于微分方程部分变元渐近稳定性定理的改进[J].空军雷达学院学报,2003,17(4):46-47. 被引量:2
  • 2徐道义,颜祥伟.非线性微分方程部分变元的有界性[J].四川师范大学学报(自然科学版),1996,19(2):26-32. 被引量:3
  • 3Samoilenko A M, Perestyuk A A. Impulsive Differential Equations[M]. World Scientific Press Singapore,1995. 被引量:1
  • 4Lakshimikantham V, Liu X Z. Stability for impulsive differential systems in terms of two measures[J]. Appl Math Comp, 1989,29 (1) : 89- 98. 被引量:1
  • 5Wang P G, Lian H R. On the stability in terms of two measures for perturbed impulsive integro-differential equatinns[J]. J Math Anal Appl,2006,313(2):642-653. 被引量:1
  • 6Wang P G, Liu X. Practical stability of impulsive hybrid differential systems in terms of two measures on time scales[J]. Non Anal ,2006,65(11) :2035-2042. 被引量:1
  • 7Lakshimikantham V, Matrosov V M, Sivasundaram S. Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems[M]. Kluwer Academic Publisher,1991. 被引量:1
  • 8Gronwall T H.Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[J].Ann.Math.1919,(20):292-296. 被引量:1
  • 9Bellman R,Cooke K L.Differential-difference equations[M].New York:Academic Press,1963. 被引量:1
  • 10Canuto C,Hussaini M Y,Quarteroni A,Zhang T A.Spectral method in fluid dynamics[M].Berlin:Springer-Verlag,1988. 被引量:1

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部