期刊文献+

风险资本约束下保险公司的最优比例再保险-投资策略 被引量:3

Optimal proportional reinsurance-investment policies for an insurer under Capital-at-Risk constraint
下载PDF
导出
摘要 本文研究保险公司的再保险–投资问题.假定保险公司的整体风险由风险资本(Capital-at-Risk,CaR)来度量;盈余过程由扩散模型近似表示;在任意时刻保险公司可购买比例再保险(或获取新业务)和投资无风险资产与多种风险资产;风险资产的价格由几何布朗运动驱动.保险公司的目标是在整体风险CaR受约束的条件下最大化终端财富的期望值.对这一问题,建立了两个均值--CaR模型.利用分层优化方法和变分法,得到了模型的最优比例再保险–投资策略以及有效边界的解析表达式. This paper investigates a reinsurance-investment problem for an insurer.Assume that the integral risk of the insurer is measured by Capital-at-Risk(CaR),the surplus process is described by a diffusion approximation model;the insurer is allowed to purchase proportional reinsurance(or acquire new business) and to invest on a risk-free asset and multiple risky assets at any time;the prices of risky assets are driven by the model of geometric Brownian motions.The target of the insurer is to maximize the expectation of the terminal wealth under a CaR constraint.Two mean-CaR models are established for the problem.Explicit expressions of the optimal policies and efficient frontiers to the models are derived by using a hierarchical optimization method and the variational calculus approach.
作者 曾燕 李仲飞
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第4期467-471,共5页 Control Theory & Applications
基金 国家杰出青年科学基金资助项目(70825002)
关键词 风险资本约束 比例再保险策略 投资策略 保险公司 整体风险 Capital-at-Risk constraint proportional reinsurance policy investment policy insurer integral risk
  • 相关文献

参考文献24

  • 1LUNDBERG F I. Approximerad Framstallning av Sannolike- hetsfunktionen 11: Aterforsakering av Kollektivrisker[M]. Uppsala: Almqvist and Wiksell, 1903. 被引量:1
  • 2CRAMER H. On the Mathematical Theory of Risk[M]. Stockholm: Skandia Jubilee Volume, 1930. 被引量:1
  • 3HФJGAARD B, TAKSAR M. Optimal proportional reinsurance policies for diffusion models with transaction costs[J]. Insurance: Mathematics and Economics, 1998, 22(1): 41 - 51. 被引量:1
  • 4SCHMIDLI H. Optimal proportional reinsurance policies in a dynamic setting[J]. Scandinavian Actuarial Journal, 2001, 1(1): 55 - 68. 被引量:1
  • 5BAUERLE N. Benchmark and mean-variance problems for insurers[J]. Mathematical Methods of Operations Research, 2005, 62(1): 159- 165. 被引量:1
  • 6LIANG Z B. Optimal proportional reinsurance for controlled risk process which is perturbed by diffusion[J]. Acta Mathematicae Applicatae Sinica, English Series, 2007, 23(3): 477 - 488. 被引量:1
  • 7EGAMI M, YOUNG V R. Optimal reinsurance strategy under fixed cost and delay[J]. Stochastic Processes and Their Applications, 2009, 119(3): 1015 - 1034. 被引量:1
  • 8BROWNE S. Optimal investment policies for a finn with a random risk process: exponential utility and minimizing the probability of ruin[J]. Mathematical Methods of Operations Research, 1995, 20(4): 937 - 958. 被引量:1
  • 9HIPP C, PLUM M. Optimal investment for insurers[J]. Insurance:Mathematics and Economics, 2000, 27(2): 215 -228. 被引量:1
  • 10YANG H L, ZHANG L H. Optimal investment for insurer with jumpdiffusion risk process[J]. Insurance: Mathematics and Economics, 2005, 37(3): 615 - 634. 被引量:1

二级参考文献15

  • 1荣喜民,李楠.保险基金的最优投资研究[J].数量经济技术经济研究,2004,21(10):62-67. 被引量:21
  • 2BROWNE S. Optimal investment policies for a firm With a random risk process: exponential utility and minimizing the probability of ruin[J]. Mathematics of Operations Research, 1995, 20(4): 937-958. 被引量:1
  • 3HIPP C, PLUM M. Optimal investment for insurers[J]. Insurance: Mathematics -z Economics, 2000, 27(10): 215-228. 被引量:1
  • 4HIPP C, PLUM M. Optimal investment for investor with state dependent income, and for insurers[J]. Finance and Stochastics, 2003, 7(2): 299-321. 被引量:1
  • 5YANG Hai-liang, ZHANG Li-hong. Optimal investment for insurer with jump-diffusion risk process[J].Insurance: Mathematics & Economics, 2005, 37(3): 615-634. 被引量:1
  • 6WANG Nan. Optimal investment for an insurer with exponential utility preference[J]. Insurance: Mathematics and Economics, 2007, 40(1): 77-84. 被引量:1
  • 7WANG Zeng-wu, XIA Jiang-ming, ZHANG Li-hong. Optimal investment for an insurer: the martingale approach[J]. Insurance: Mathematics and Economics, 2007, 40(2): 322-334. 被引量:1
  • 8ALEXANDER G, BAPTISTA A. Economic implications of using a mean-VaR model for portfolio selection: a comparison with mean-variance analysis[J]. Journal of Economic Dynamics & Control, 2002, 26(7): 1 159-1 193. 被引量:1
  • 9LI Zhong-fei, DENG Xiao-tie. Optimal dynamic portfolio selection with earnings-at-risk[J]. J Optim Appl, 2007, 132(3):459-473. 被引量:1
  • 10EMMER S, KLUPPELBERG C, KORN R. Optimal portfolios with bounded capital-at-risk[J]. Mathematical Finance, 2001, 11(4): 365-384. 被引量:1

共引文献2

同被引文献49

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部