期刊文献+

蜂窝夹心结构等效导热系数反演的边界单元法 被引量:1

Using boundary element method to inverse effective conductivities for honeycomb sandwich
下载PDF
导出
摘要 对蜂窝夹心结构的等效导热系数进行反演,对于热防护系统的优化设计具有重要意义。本文应用高斯定理、径向基函数和径向积分法,推导了各向异性材料稳态热传导方程的边界单元表达式;应用Newton-Raphson迭代法和复变量求导法,对蜂窝夹心结构等效导热系数进行反演。分别应用形函数、高斯积分和径向基函数插值,对蜂窝夹心结构的边界条件进行等效处理。通过对由4个胞元组成的蜂窝夹心结构的等效导热系数进行反演,验证算法的可靠性。所做工作可将蜂窝夹心结构的复杂多区域问题简化为单区域问题,为求解多胞元蜂窝夹心结构的传热问题创造了较有利条件。 Inversion of effective conductivities for honeycomb sandwich is of great importance for optimal design of TPS. Boundary element expressions of anisotropic heat conduction equations are derived by Gauss theorem, radial basis function and radial integration method. Coupled with Newton-Raphson and complex variable methods, effective conductivities for honeycomb sandwich are inversed. Shape functions, Gauss quadrature and radial basis function interpolation are applied. The methods are validated by honeycomb sandwich structure consisted of four honeycombs. The work simplifies the multi-region into one region, and provides advantages for heat transfer calculation in honeycomb sandwich structure consisted of many honeycombs.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2011年第B04期126-130,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金资助项目(10872050) 中央高校基本科研业务费资助项目
关键词 边界单元法 径向基函数 径向积分法 等效导热系数 蜂窝夹心 boundary element method radial basis function radial integration method effective conductivities honeycomb sandwich
  • 相关文献

参考文献9

  • 1Daryabeigi K. Heat transfer in Adhesively Bonded Honeycomb Core Panels[J], Journal of Thermophysics and Heat Transfer, 2002,16(2):217-221. 被引量:1
  • 2李义强,聂玉峰,魏杰.金属蜂窝夹芯面板有效导热系数的数值计算[J].航空计算技术,2010,40(2):5-8. 被引量:3
  • 3Nardini D, Brebbia C A. A new approach for free vibration analysis using boundary elements[A].Boundary element methods in engineering[C]. Berlin: Springer, 1982, 312-326. 被引量:1
  • 4Nowak A J, Brebbia C A. The multiple-reciprocity method-A new approach for transforming BEM domain integrals to the boundary[J]. Engineering Analysis with Boundary Elements, 1989,6(3): 164-167. 被引量:1
  • 5Gao X W. The radial integration method for evaluation of domain integrals with boundary-only discretization[J]. Engineering Analysis with Boundary Elements. 2002,26:905-916. 被引量:1
  • 6Lyness J N, Moler C B. Numerical differentiation of analytic functionS[J]. SIAM Journal on Numerical Analysis, 1967,4(2):202-210. 被引量:1
  • 7Gao X W, Zhang Ch, Sladek J, et al. Fracture analysis of functionally graded materials by a BEM[J]. Composites Science and Technology, 2008, 68:1209-1215. 被引量:1
  • 8Gao X W, Liu D D, Chen P C. Internal stresses in inelastic BEM using complex-variable differentiation[J]. Computational Mechanics. 2002, 28:40-46. 被引量:1
  • 9Gao X W, Wang J. Interface integral BEM for solving multi-medium heat conduction problems[J]. Engineering Analysis with Boundary Elements, 2009, 33:539-546. 被引量:1

二级参考文献5

共引文献2

同被引文献2

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部