摘要
简要介绍了多尺问题与研究方法。重点论述了两类常见多尺度问题的模拟计算方法与研究进展,分析了各自的优缺点和使用范围。对现有研究的局限性和存在的问题进行分析,指出了进一步研究多尺度模拟与计算的必要性。介绍了求解含有孤立缺陷问题的非局部准连续体法、MAAD等方法以及求解基于微观模型本构模拟问题的局部连续体法、HMM等方法。文章对多尺度模拟与计算的前景进行展望,提出了一些亟待解决的问题。
Multiscale problems and Multiscale methods are briefly reviewed in this paper. Some multiscale theories and their new achievements in modeling and computation of two typical categories multiscale problems are introduced. The advantages and disadvantages of different methods are also analyzed to evaluate their applicability. The limitations and existing problems are analyzed and the importance of further studies on multiscale methods is pointed out. Mainly, there are Non-local quasi-continuum method, MacroAtomistic ab-{nitio Dynamics(MAAD) method, Coarse Grained Molecular Dynamics (CGMD) method, Coarse-grained Monte Carlo(CGMC) method and Coupled continuum -MD model for isolated defects problems and local quasi-continuum method, Artificial compressibility method, Gas-kinetic scheme and HMM for constitutive modeling problems. Finally, some problems on this subject are explained.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2011年第B04期1-5,共5页
Chinese Journal of Computational Mechanics
基金
江苏省基础研究计划项目(BK2009259)
江苏省"333高层次人才培养工程"科研项目资助
关键词
多尺度
模拟与计算
进展
multiscale method
modeling and computation, new achievements