期刊文献+

前馈神经网络结构动态增长-修剪方法 被引量:8

Research on dynamic feed-forward neural network structure based on growing and pruning methods
下载PDF
导出
摘要 针对前馈神经网络隐含层神经元不能在线调整的问题,提出了一种自适应增长修剪算法(AGP),利用增长和修剪相结合对神经网络隐含层神经元进行调整,实现神经网络结构的自组织,从而提高神经网络的性能.同时,将该算法应用于污水处理生化需氧量(BOD)软测量,仿真实验结果表明,与其他自组织神经网络相比,AGP具有较好的泛化能力及较高的拟合精度,能够实现出水BOD的预测. Due to the unchangable on-line problem of hidden neurons in feed-forward neural networks,an adaptive growing and pruning algorithm(AGP) was presented in this paper.This algorithm can insert and prune hidden neurons during the training process to adjust the structure of the network and achieve self organization of neural network structure,which can improve the performance of the neural network.Additionally,this algorithm has been applied to the biochemical oxygen demand(BOD) soft measurement of the wastewater treatment process.Experimental results show that the proposed algorithm can forecast the effluent BOD with better generalization ability and higher accuracy than other self-organizing neural networks.
出处 《智能系统学报》 2011年第2期101-106,共6页 CAAI Transactions on Intelligent Systems
基金 国家"863"计划资助项目(2007AA04Z160) 国家自然科学基金资助项目(60873043) 北京市自然科学基金资助项目(4092010) 高等学校博士点专项科研基金资助项目(200800050004)
关键词 自适应增长修剪算法 BOD软测量 神经网络 自组织 adaptive growing and pruning(AGP) BOD soft-measurement neural network self organization
  • 相关文献

参考文献13

  • 1乔俊飞,张颖.一种多层前馈神经网络的快速修剪算法[J].智能系统学报,2008,3(2):173-176. 被引量:12
  • 2杨慧中,王伟娜,丁锋.神经网络的两种结构优化算法研究[J].信息与控制,2006,35(6):700-704. 被引量:11
  • 3BORTRMAN M, ALADIEM M. A growing and pruning method for radial basis function networks [ J ]. IEEE Transaction on Neural Networks, 2009, 20(6) : 1039-1045. 被引量:1
  • 4HASSIBI B, STORK D G. Second order derivatives for network pruning, optimal brain surgeon [ C ]//Advances in Neural Information Processing Systems. San Mateo, USA: Morgan Kauffman, 1993: 164-171. 被引量:1
  • 5LAURET P, FOCK E, MARA T A. A node pruning algorithm based on a Fourier amplitude sensitivity test method [J]. IEEE Transactions on Neural Networks, 2006, 17 (2) : 273-293. 被引量:1
  • 6XU Jinhua, DANIEL W. A new training and pruning algorithm based on node dependence and Jacobian rank deficiency[J]. Neurocomputing, 2006, 70(1):544-558. 被引量:1
  • 7MARSLAND S, SHAPIRO J. A self-organizing network that grows when required[ J ]. Neural Networks, 2002, 15 ( 8 ) : 1041-1058. 被引量:1
  • 8ISLAM M, SATrAR A, AMIN F, YAO Xin. A new adaptive merging and growing algorithm for designing artificial neural networks[ J]. IEEE Trans Systems, Man, Cybernetics-Part B : Cybernetics, 2009, 39 (3) : 705-722. 被引量:1
  • 9QIAO Junfei, HAN Honggui. A repair algorithm for RBF neural network and its application to chemical oxygen demand modeling [ J ]. International Journal of Neural Systems, 2010, 20(1): 63-74. 被引量:1
  • 10JOHNSON C, VENAYAGAMOORTHY G K, MITRA P. Comparison of a spiking neural network and an MLP for robust identification of generator dynamics in a muhimachine power system [ J ]. Neural Networks, 2009, 22 ( 5/6 ) : 833-841. 被引量:1

二级参考文献29

  • 1胡玉玲,冉维丽,乔俊飞.污水处理过程中DO的模糊神经网络控制[J].计算技术与自动化,2003(z1):68-71. 被引量:3
  • 2刘超彬,乔俊飞,张芳芳.污水处理过程中溶解氧的模糊神经网络控制[J].山东大学学报(工学版),2005,35(3):83-87. 被引量:22
  • 3姜惠兰,李桂鑫,崔虎宝,孟庆强.PWM整流器的径向基函数神经网络控制新方法[J].信息与控制,2006,35(3):406-410. 被引量:4
  • 4戴葵.神经网络设计[M].北京:机械工业出版社,2002.399-421. 被引量:29
  • 5[3]MOODY J.Prediction risk and architecture selection for neural networks[C]// Statistics to Neural Networks:Theory and Pattern Recognition Applications,NATO ASI Series F.New York,1994. 被引量:1
  • 6[4]FAHLMAN S E,LEBIERE C.The cascade-correlation learning architecture[C]// Advances in Neural Information Processing Systems.San Mateo,USA,1990. 被引量:1
  • 7[5]HASSIBI B.STORK D,WOLFF G.Optimal brain surgeon and general network pruning[C]// IEEE International Conferenceon on Neural Networks.Perth,Australia,1993. 被引量:1
  • 8[8]JAMES T L.Statistical method of pruning neural networks[C]// International Joint Conference on Neural Networks.Washington,DC,1999. 被引量:1
  • 9[9]KIERON M.Fast unit selection algorithm for neural network design[C]// 15th International Conference on Pattern Recognition.Southampton,2000. 被引量:1
  • 10[10]MESSER K,KITTLER J.Choosing an optimal neural network size to aid search through a large image database[C]// Proc British Machine Vision Conference BMVC98.[S.l.],1998. 被引量:1

共引文献31

同被引文献68

引证文献8

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部