期刊文献+

具有时滞的食饵-捕食者模型的分支问题(英文) 被引量:3

Bifurcations in a Delayed Predator-prey Model
原文传递
导出
摘要 研究一类具有时滞和比率依赖型功能反应函数的食饵-捕食者模型的动力学行为,分析表明系统的渐近稳定关键依赖于时滞。通过选择时滞作为参数,分析了系统从正平衡点处产生极限环的Hopf分支问题,同时得到了系统正平衡点稳定的时滞范围为0<τ<τ+,给出数值模拟验证了作者所得结果的正确性。最后给出本文的主要结论:当τ∈[0,τ0)时,系统(2)的平衡点是渐近稳定的,当τ=τkj,k=1,2,3,4;j=0,1,2,…时,系统(2)在平衡点附近产生Hopf分支,时滞长度为τ。 In this paper,the dynamics of a delayed predator-prey model with ratio-dependent type functional response are considered.We show that the asymptotic behavior depends crucially on the time delay parameter.We are particularly interested in the study of the Hopf bifurcation problem to predict the occurrence of a limit cycle bifurcating from the positive equilibrium.By choosing the the delay as a bifurcation parameter,the length of delay which preserves the stability of the positive equilibrium is calculated(i.e.,0ττ+).Some numerical simulation for justifying the analytical findings is also provided.Main conclusions are as follows: the positive equilibrium of the system is asymptotically stable for τ∈[0,τ0).The system undergoes a Hopf bifurcation at the positive equilibrium when τ=τjk,k=1,2,3,4;j=0,1,2,…,and the length of delay is τ+.
出处 《重庆师范大学学报(自然科学版)》 CAS 2011年第3期43-48,共6页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.10771215) 湖南省教育厅资助科研项目(No.10C0560) 湖南省科技计划资助项目(No.2010FJ6021) 湖南工程学院科研启动项目(No.0744)
关键词 食饵-捕食者模型 时滞 稳定性 HOPF分支 周期解 predator-prey model time delay stability Hopf bifurcation periodic solution
  • 相关文献

参考文献15

  • 1Takeuchi Y,Cui J A,Miyazaki R,et al.Permanence of dispersal population model with time delays[J].J Comput Appl Math,2006,192(2):417-430. 被引量:1
  • 2Xu R,Chaplain M A J,Davidson FA.Periodic solutions for a delayed predator-prey model of prey dispersal in twopatch environments[J].Nonlinear Aral:Real Word Appl,2004,5(1):183-206. 被引量:1
  • 3May R M.Time delay versus stability in population models with two and three trophic levels[J].Ecology,1973,4 (2):315-325. 被引量:1
  • 4Song Y L,Wei J J.Local Hopf bifurcation and global periodic solutons in a delayed predator prey system[J].J Math Anal Appl,2005,301 (1):1-21. 被引量:1
  • 5Yuan S L,Zhang F Q.Stability and global Hopf bifurcation in a delayed predator-prey system[J].Nonlinear Anal Real World Appl,2010,11 (2):959-977. 被引量:1
  • 6Yan X P,Zhang C H.Hopf bifurcation in a delayed LoktaVolterra predator-prey system[J].Nonlinear Anal:Real World Appl,2008,9(1):114-127. 被引量:1
  • 7Faria T.Stability and bifurcation for a delayed predator-prey model and the effect of diffusion[J].J Math Anal Appl,2001,254(2):433-463. 被引量:1
  • 8Song Y L,Yuan S L.Bifurcation analysis in a predator-prey system with time delay[J].Nonlinear Anal:Real World Appl,2006,7 (2):265-284. 被引量:1
  • 9Ruan S.Absolute stability,conditional stability and Hopf bifurcation in Kolmoggorov-type predator-prey systems with discrete delays[J].Quart Appl Math,2001,59 (2):159-173. 被引量:1
  • 10Meng X Z,Jiao J J,Chen L S.The dynamics of an age structured predator-prey model with distubing pulse and time delays[J].Nonlinear Anal Appl,2008,9 (2):547-561. 被引量:1

同被引文献25

  • 1朱熹平.临界增长拟线性椭圆型方程的非平凡解[J].中国科学:A辑,1988,3:225-237. 被引量:12
  • 2Bae $, Hadiji R, Vigneron F, et al. A non- linear problem involving a critical Sobolev exponent[ J]. J Math Anal Appl,2012, 396( 1 ) :98 - 107. 被引量:1
  • 3Zhang Y J. Multiple solutions of an inhomogeneous Neumann problem for an elliptic system with critical Sobolev exponent [ J ]. Nonlinear Anal:TMA,2012,75 (4) :2047 -2059. 被引量:1
  • 4Lin H L. Positive solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent[ J]. Nonlinear Anal :TMA, 2012,75 (4) :2660 - 2671. 被引量:1
  • 5Lu D F. Multiple solutions for a class of biharmonic elliptic systems with Sobolev critical exponent [ J ]. Nonlinear Anal:TMA, 2011,74(17) :6371 -6382. 被引量:1
  • 6Wu T F. Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign- changing weight[ J ]. J Diff Eqns ,2010,249 (7) : 1549 - 1578. 被引量:1
  • 7Li T X, Wu T F. Multiple positive solutions for a Dirichlet problem involving critical Sobolev exponent[j]. J Math Anal Appl, 2010,369( 1 ) :245-257. 被引量:1
  • 8Deng Z Y, Huang Y S. On G -symmetric solutions of a quasilinear elliptic equation involving critical Hardy -Sobolev exponent [ J ]. J Math Anal Appl,2011,384(2) :578 -590. . 被引量:1
  • 9Liu H D. Multiple positive solutions for a semilinear elliptic equation with critical Sobolev exponent [ J ]. J Math Anal Appl, 2009,354(2) :451 -458. 被引量:1
  • 10Xuan B J, Wang J C. Extremal functions and best constants to an inequality involving Hardy potential and critical Sobolev expo- nent[J]. Nonlinear Anal:TMA,2009,71 (3/4) :845 -859. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部