摘要
Modern computer graphics applications usually require high resolution object models for realistic rendering. However, it is expensive and difficult to deform such models in real time. In order to reduce the computational cost during deformations, a dense model is often manipulated through a simplified structure, called cage, which envelops the model. However, cages are usually built interactively by users, which is tedious and time-consuming. In this paper, we introduce a novel method that can build cages automatically for both 2D polygons and 3D triangular meshes. The method consists of two steps: 1) simplifying the input model with quadric error metrics and quadratic programming to build a coarse cage; 2) removing the self-intersections of the coarse cage with Delaunay partitions. With this new method, a user can build a cage to envelop an input model either entirely or partially with the approximate vertex number the user specifies. Experimental results show that, compared to other cage building methods with the same number of vertex, cages built by our method are more similar to the input models. Thus, the dense models can be manipulated with higher accuracy through our cages.
Modern computer graphics applications usually require high resolution object models for realistic rendering. However, it is expensive and difficult to deform such models in real time. In order to reduce the computational cost during deformations, a dense model is often manipulated through a simplified structure, called cage, which envelops the model. However, cages are usually built interactively by users, which is tedious and time-consuming. In this paper, we introduce a novel method that can build cages automatically for both 2D polygons and 3D triangular meshes. The method consists of two steps: 1) simplifying the input model with quadric error metrics and quadratic programming to build a coarse cage; 2) removing the self-intersections of the coarse cage with Delaunay partitions. With this new method, a user can build a cage to envelop an input model either entirely or partially with the approximate vertex number the user specifies. Experimental results show that, compared to other cage building methods with the same number of vertex, cages built by our method are more similar to the input models. Thus, the dense models can be manipulated with higher accuracy through our cages.
基金
Supported by the NSFC-Guangdong Joint Fund under Grant Nos. U0735001,U0835004,U0935004
the National Basic Research 973 Program of China under Grant No. 2011CB302204