摘要
对图G= (V,E),SZ,如果V= S,且uv ∈E(u,v ∈V) 当且仅当u + v ∈S,那么称G为关于S的∫∑- 图⒀而∫∑- 数ζ(G)= m in{t|G∪tK1 是∫∑- 图}⒀这是文献[1]所引入的概念⒀本文解决了文献[1]中的一个问题,证明了:所有毛虫树T均为∫∑- 图,即ζ(T)=0,同时否定了该文中的猜想:所有满足ζ(T) = 0
Given a graph G=(V,E ),If there exists a set SZ such that V =Sand uv ∈ E ( u,v ∈ V )if and only if u+v ∈ S ,then G is∫∑-graph(Integral sum graph).The∫∑-number (Integral sum number) ζ(G) =min{t| G∪tK 1 is Integral sum graph}.This concept is introduced by [1].This paper proved:all caterpillars is∫∑-graphs,and the conjecture“all tree T that satisfy ζ(T) =0 is caterpillars” is false.
出处
《华东交通大学学报》
1999年第3期74-77,共4页
Journal of East China Jiaotong University
基金
江西省自然科学基金