期刊文献+

人工神经网络泛化性能改进 被引量:8

Improve the generalization capability of artificial neural network
下载PDF
导出
摘要 泛化能力是人工神经网络的重要特性.总结了增强神经网络泛化能力的几种方法,分析了各自的优缺点,并使用Matlab中提供的函数进行非线性函数的逼近,通过仿真与原函数拟合验证了泛化能力的提高. The generalization capability is one most important performance of Artificial Neural Network (ANN). This paper discusses several methods on enhancement of ANN generalization capability, and analyzes their advantages and disadvantages. Functions provided by Matlab were employed to approximate the non-linear function, simulation and fitting with original fuction were carried out to verify the improvement of generalization capability.
出处 《南京信息工程大学学报(自然科学版)》 CAS 2011年第2期164-167,共4页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家重点基础研究发展计划项目(2009CB320501)
关键词 神经网络 泛化能力 MATLAB artificial neural networks generalization capability Matlab
  • 相关文献

参考文献9

二级参考文献28

  • 1武妍,王守觉.一种通过反馈提高神经网络学习性能的新算法[J].计算机研究与发展,2004,41(9):1488-1492. 被引量:15
  • 2E Trentin. Networks with trainable amplitude of activation functions. Neural Networks, 2001, 14(4-5): 471~493 被引量:1
  • 3K Eom, K Jung, H Sirisena. Performance improvement of backpropagation algorithm by automatic activation function gain tuning using fuzzy logic. Neurocomputing, 2003, 50: 439~460 被引量:1
  • 4A Gupta, S M Lam. Weight decay backpropagation for noisy data. Neural Networks, 1998, 11(6): 1127~1137 被引量:1
  • 5Y H Zweiri, J F Whidborne, L D Seneviratne. A three-term backpropagation algorithm. Neurocomputing, 2003, 50: 305~318 被引量:1
  • 6B L Lu, H Kita, Y Nishikawa. Inverting feedforward neural networks using linear and nonlinear programming. IEEE Trans on Neural Networks, 1999, 10(6): 1271~1290 被引量:1
  • 7J N Hwang, J J Choi, S Oh, et al. Query based learning applied to partially trained multilayer perceptrons. IEEE Trans on Neural Networks, 1991, 2(1): 131~136 被引量:1
  • 8H Ishibuchi, M Nii. Fuzzification of input vector for improving the generalization ability of neural networks. The Int'l Joint Conf on Neural Networks, Anchorage, Alaska, 1998 被引量:1
  • 9X H Yu, G A Chen. Efficient backpropagation learning using optimal learning rate and momentum. Neural Network, 1997, 10(3): 517~527 被引量:1
  • 10G D Magoulas, V P Plagiananakos, M N Vrahatis. Globally convergent algorithms with local learning rates. IEEE Trans on Neural Networks, 2002, 13(3): 774~779 被引量:1

共引文献28

同被引文献64

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部