期刊文献+

一种基于频繁模式有向无环图的数据流频繁模式挖掘算法 被引量:4

An algorithm based on frequent patterns directed acyclic graph for mining frequent patterns from data stream
下载PDF
导出
摘要 频繁模式挖掘中基于FP-growth的算法需要扫描两次事务数据库,预先给定支持度,且不支持时间敏感型数据。本文提出了一种基于频繁模式有向无环图的数据流频繁模式挖掘算法,它根据事务到来的时间给每个事务一个序号,每个事务中的数据项在存储前按数据项的顺序进行调整,频繁模式有向无环图的构建遵循这个顺序并用序号来记录事务与数据项的包含关系,模式增长过程只需要增加有向边上的序号。通过逆向遍历带有相同序号的有向边,产生条件模式基,根据动态定义的阈值抽取条件模式基信息,一次扫描数据库得到频繁模式。实验结果表明,本文算法的执行效率优于FP-growth算法,且存储节点的数目明显减少。 The algorithms based on FP-growth for mining frequent patterns need to scan the transaction database twice and givethe threshold in advance, it also can not support time sensitive data stream. In this paper, an algorithm based on frequent patterndirected acyclic graph for mining frequent patterns from data stream is proposed. Each transaction is given a number according toits coming time. Items contained in a transaction are sorted by their order, and the directed acyclic graph follows that order. Afrequent pattern directed acyclic graph records the relation between transactions and items by its number. The process of patterngrowth is to increase the transaction number of the directed edges. The algorithm travels edges conversely by the same transactionnumber and products the conditional pattern bases, it can abstract the information of the conditional pattern bases according to dy-namic threshold and scan the database only once to gain frequent patterns. The experiment shows that the proposed algorithm isbetter than FP-growth in execute time and the number of the storaged node is significiantly reduced.
出处 《燕山大学学报》 CAS 2011年第2期115-120,共6页 Journal of Yanshan University
基金 河北省自然科学基金资助项目(F2008000888)
关键词 数据流 频繁模式 频繁模式有向无环图 data stream frequent pattern frequent patterns directed acyclic graph
  • 相关文献

参考文献8

  • 1Han Jiawei, Pei Jian, Yin Yiwen. Mining frequent pattern without candidate generation [C] //ACM SIGMOD international conference, Dallas, TX, USA, 2000. 被引量:1
  • 2Cheung D W, Han J W, Ng V T, et al.. Maintenance of discovered association rules in large database: an incremental updating technique [C] //Proceedings of the Twelfth International Conference on Data Engineering,New Orleans, Louisiana, USA, 1996:106-114. 被引量:1
  • 3Hong Tzung-Pei, Lin Chun-Wei, Wu Yu-Lung. Incrementally fast updated frequent pattern trees [J]. Expert Systems with Applications, 2008,34 (4): 2424-2435. 被引量:1
  • 4Liu Hongyan, Wang Xiaoyu, He Jun, et al.. Top-down mining of frequent closed patterns from very high dimensional data [J]. Information Sciences, 2009,179 (7): 899-924. 被引量:1
  • 5Tan Jun, Bu Yingyong, Yang Bu. An efficient close frequent pattern mining algorithm [C] //Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, 2009: 528-531. 被引量:1
  • 6Nanopoulos A, Manolopoulos Y. Mining pattems from graph traversals [J]. Data and Knowledge Engineering, 2001,37 (3): 243-266. 被引量:1
  • 7刘俊侠.使用有向图挖掘时间间隔序列模式[J].计算机科学与探索,2008,2(6):666-672. 被引量:2
  • 8Geng Runian, Dong Xiang, jun. WTMaxMiner: efficient mining of maximal frequent patterns based on weighted directed graph traversals [C] //IEEE International Conference on Cybernetics and Intelligent Systems, 2008: 1081-1086. 被引量:1

二级参考文献2

  • 1Mohammed J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent Sequences[J] 2001,Machine Learning(1-2):31~60 被引量:1
  • 2Heikki Mannila,Hannu Toivonen,A. Inkeri Verkamo. Discovery of Frequent Episodes in Event Sequences[J] 1997,Data Mining and Knowledge Discovery(3):259~289 被引量:1

共引文献1

同被引文献38

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部