期刊文献+

基于空间时频分布的欠定混合信号源个数估计

Estimation of the Sources Number in the Underdetermined Mixture Signals Based on Spatial Time-frequency Distribution
下载PDF
导出
摘要 针对欠定混合信号的源个数估计问题,提出了一种基于空间时频分布与奇异值分解的估计算法,把所有自源时频点对应的空间时频分布矩阵组成三阶张量,把欠定混合问题转化为超定问题,通过对三阶张量对应的矩阵进行奇异值分解估计出源信号的数目,该方法不需要假设源信号是稀疏的或独立的,理论分析和仿真结果验证了算法的有效性。 Aiming at the problem of estimation of the sources number in the underdetermined mixture signals,this paper propose a algorithm based on spatial time-frequency distribution(STFD) and singular value decomposition(SVD) without the assumption of sparsity and independence.First,the time-frequency distribution matrices corresponded to the auto-source TF points was stacked in three-order tensor,then the entries of the tensor stacked in matrix and SVD on this matrix was performed to finish the estimation of the sources number.The efficiency of the algorithm was proved in theory.Computer simulations show that the proposed recognition algorithm is high in performance.
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2011年第2期73-76,共4页 Journal of National University of Defense Technology
基金 新世纪优秀人才支持计划资助项目
关键词 空间时频分布 欠定混合信号 源个数估计 spatial time frequency distribution underdetermined mixing signals estimation of the sources number
  • 相关文献

参考文献12

  • 1Bell A J, Sejnowski T J. An Information-maximization Approach to Blind Separation and Blind Deconvolution [ J ]. Neural Computation, 1995, 7(6): 1129-1159. 被引量:1
  • 2Wax M, Kailath T. Detection of Signals by Information Theoretic Criteria [J]. IEEE Trans. Acoustics, Speech and Signal Processing, 1985, 33(2) : 387 - 392. 被引量:1
  • 3Wu H T, Yang J F, Chen F K. Source Number Estimators Using Transformed Gerschgofin Radii [J]. IEEE Trans. SP, 1995, 43 (6) : 1325 - 1333. 被引量:1
  • 4Wu H T, Chen C L. A New Gerschgorin Radii Based Method for Source Number Detection [C]//IEEE Statistical Signal and Array Processing Proceedings, 2000, 104 - 107. 被引量:1
  • 5Radoi E, Quinquis A. A New Method for Estimating the Number Harnnonic Components in Noise with Application in High Resolution Radar [J]. EURASIP Journal on Applied Signal Processing, 2004, 8:1177 - 1188. 被引量:1
  • 6Bofill P, Zibulevsky M. Underdetennined Blind Source Separation Using Sparse Representations [J]. Signal Process, 2001, 81(11) : 2353 - 2362. 被引量:1
  • 7Luo Y H, WangW, ChambersJ A. Exploitation of Source Nonstrationanity in Underdetermined Blind Sauce Separation with Advanced Oustering Techniques [ J ]. IEEE Trans. Signal Processing, 2006, 54 (6) : 2198 - 2212. 被引量:1
  • 8谭北海,杨祖元,周郭许,章晋龙.欠定盲分离中源的个数估计和分离算法[J].中国科学(F辑:信息科学),2009,39(3):349-356. 被引量:6
  • 9Arbetet S, Gribonval R, Binbit F. A Robust Method to Count and Locats Audio Sources in a Multichannel Underdetermined Mixture[J]. IEEE Trans. Signal Processing, 2010, ,58(1): 121 - 133. 被引量:1
  • 10Lathauwer L D, Castaing J, Cardoso J F. Fourth-order Cumulant- based Blind Identification of Underdetermined Mixtures [ J ]. IEEE Trans. Signal Processing, 2007, 55(6): 2965-2973. 被引量:1

二级参考文献21

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部