期刊文献+

基于Beowulf集群的大规模电力系统牛顿法潮流求解的并行GMRES方法 被引量:12

Parallel GMRES Techniques for Solving Newton Power Flow of Large Scale Power Systems on the Beowulf Cluster
下载PDF
导出
摘要 大规模电力系统牛顿法潮流计算中,修正方程组的系数矩阵具有高维、稀疏、非对称的特点,结合该特点,提出基于预条件GMRES的并行牛顿法潮流计算方法。其中,对块Jacobi预条件子矩阵而言,根据处理器数确定其分块数,依此设计出高效的准对角并行预条件子矩阵;通过对Jacobi矩阵更新过程的矢量化处理,结合并行稀疏矩阵向量运算技术,提出Jacobi矩阵更新的并行化计算方法。对7 680节点、12 000节点等多个大规模电力系统进行潮流计算,结果表明:随着系统规模的增大(达到3 000节点及以上时),本文提出的并行潮流计算方法比传统并行LU分解法在并行加速比、并行效率等方面有明显优势。 Considering the characteristics of the coefficient matrix of Newton power flow equations for a large scale power system,such as high dimension,sparse and unsymmetrical,a parallel solving method of Newton power flow equations using a preconditioned generalized-minimal-residual(GMRES) method is presented.Based on the structural characteristics of block-Jacobi preconditioners matrix and the number of parallel processors,a preconditioner for the parallel computing process for power flow,which is designed as a quasi-diagonal parallel preconditioner matrix is proposed.A parallel computing method for the iterative corrections of Jacobi matrix based on the parallel matrix-vector operational method by performing the vectorization process of Jacobi matrix is also proposed in this paper.Case studies of 7 680 and 12 000 buses power system and other power systems are done.The results indicate that the proposed parallel power flow calculating method has an obvious superiority compared with the traditional parallel method based on the LU factorization method for large scale power systems.
出处 《电工技术学报》 EI CSCD 北大核心 2011年第4期145-152,共8页 Transactions of China Electrotechnical Society
基金 中央高校基本科研业务费(CDJRC10150011) 国家自然科学基金(50777067 51077135) 输配电装备及系统安全与新技术国家重点实验室自主研究项目(2007DA10512709103) 重庆市杰出青年基金(CSTC2010BA3006)等资助
关键词 潮流计算 准对角预条件子矩阵 Jacobi矩阵更新 并行计算 GMRES方法 Power flow calculation quasi-diagonal matrix preconditioner Jacobi matrix update parallel computing GMRES method
  • 相关文献

参考文献17

二级参考文献47

  • 1张荣,王秀和,付大金,杨玉波.改进的带二阶项配电网快速潮流算法[J].电工技术学报,2004,19(7):59-64. 被引量:16
  • 2褚文捷,张小平,陈珩.不对称三相P—Q分解法潮流的并行计算[J].中国电机工程学报,1995,15(3):185-192. 被引量:6
  • 3戈卢布GH 范洛恩CF著 袁亚湘译.矩阵计算[M].北京:科学出版社,2001.76-78. 被引量:22
  • 4Alan G, Liu J. Computer Solution of Large Sparse Positive Definite Systems. New York:Prentice-Hall, 1981 被引量:1
  • 5Eisenstat S C, Walker H F. Choosing the Forcing Terms in an Inexact Newton Methods. SIAM J on Sci Comput, 1996, 17(1):16~32 被引量:1
  • 6Saad Y. Iterative Methods for Sparse Linear Systems. Boston:PWS Pub Co, 1996 被引量:1
  • 7Saad Y. ILUT:A Dual Threshold Incomplete Factorization. Numer Linear Algebra Appl, 1994, (1):387~402 被引量:1
  • 8Flueck A J, Chiang H D. Solving the Nonlinear Power Flow Equations with an Inexact Newton Method Using GMRES. IEEE Trans on Power Systems, 1998, 13(2):267~273 被引量:1
  • 9Chaniotis D, Pai M A. Application of a Modified GMRES Algorithm for Voltage Security Calculations. In:Bulk Power System Dynamics and Control IV-Restructuring. Santorini (Greece):1999 被引量:1
  • 10Saad Y, Schultz M H. GMRES:A Generalized Mininum Residual Algorithm for Solving Non-symmetric Linear Systems. SIAM J on Sci Statist Comput, 1986, (7):856~869 被引量:1

共引文献95

同被引文献120

引证文献12

二级引证文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部