期刊文献+

SIFT改进算法在图像配准中的应用 被引量:17

Improved SIFT Algorithm for Image Matching
下载PDF
导出
摘要 文中对尺度不变特征变换(SIFT)算法进行分析研究,针对原算法中128维的高维描述子提出60维方形邻域描述子,统计邻域梯度信息.方形邻域描述子较原算法增加了邻域像素统计范围,增强了关键点的邻域信息;在配准阶段采用欧氏距离作为度量函数,用次临近与最邻近之比来对60维描述子进行匹配.通过实验证实,改进算法的匹配时间是原算法的30%~60%,配准精度与原算法相近,对于复杂图像的配准精度较原算法有所提高,适用于对实时性要求较高的图像配准场合. The principal of SIFT algorithm is researched in this paper.Due to the descriptor that one feature point needs 128 dimensions,a 60-dimension-square descriptor based on statistic local gradient information is taken forth.Comparing with the orignal one,the new descriptor expands the scope of neighborhood pixels;the ratio between the first and second closest distance is used to match the 60-dimension descriptors.According to the experiment,the results show that matching time is greatly shortened by 30%~60%;and the new descriptor is competitive with SIFT descriptor in effectiveness.Further more,the new descriptor exhibits good performance in more complicated images.Therefore,it is more suitable in real-time applications.
出处 《微电子学与计算机》 CSCD 北大核心 2011年第5期184-188,共5页 Microelectronics & Computer
关键词 尺度不变特征变换算法 尺度空间 方形邻域描述子 特征匹配 SIFT algorithm scale space square local descriptor feature matching
  • 相关文献

参考文献1

二级参考文献15

  • 1Lowe D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 2Luo Jun, Ma Y, Takikawa E, Lao S, Kawade M, and Lu Bao-Liang. Person-specific SIFT features for face recognition[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, Hawaii, USA, April, 2007, 2(11): 593-596. 被引量:1
  • 3Hu Xue-long, Tang Ying-cheng, and Zhang Zheng-hua. Video object matching based on SIFT algorithmiC]. International Conference on Neural Networks and Signal Processing, Zhenjiang, China, June, 2008: 412-415. 被引量:1
  • 4Yang Zhan-Long and Guo Bao-Long. Image mosaic based on SIFT[C]. Intelligent Information Hiding and Multimedia Signal Processing, Harbin, China, August, 2008: 1422-1425. 被引量:1
  • 5Gao Ke, Lin Shou-xun, Zhang Yong-dong, Tang Sheng, and Ren Hua-min. Attention model based SIFT keypoints filtration for image retrieval[C]. 7th IEEE/ACIS International Conference on Computer and Information Science, Portland, Oregon, USA, May, 2008: 191-196. 被引量:1
  • 6Re Y and Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, June, 2004, 2: 506-513. 被引量:1
  • 7Dalal N and Triggs B. Histograms of oriented gradients for human detection[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June, 2005: 886-893. 被引量:1
  • 8Lazebnik S, Schmid C, and Ponce J. A sparse texture representation using local affine regions[J]. IEEE Transactions on Pattern Analysis an Machine Intelligence,2005, 27(8): 1265-1278. 被引量:1
  • 9Bay H, Tuytelaars T, and Gool Van J L. SURF: Speeded Up Robust Features[C]. European Conference on Computer Vision, Graz, Austria, May, 2006: 404-417. 被引量:1
  • 10Mikolajczyk K and Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis an Machine Intelligences, 2005, 27(10): 1615-1630. 被引量:1

共引文献11

同被引文献176

引证文献17

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部