期刊文献+

基于超图正则化模型的本体概念相似度计算 被引量:16

Ontology Concept Similarity Computation Based on Regularization Framework of Hypergraph
下载PDF
导出
摘要 概念的语义相似度研究,是知识表示以及信息检索领域中的一个重要内容.选择核函数计算本体图边的权值.求解超图正则化模型得到优化函数,从而将本体图中每个顶点映射成一个实数,通过比较实数间的差值判断两概念的相似程度.实验表明该方法对于计算本体概念间的相对相似度是有效的. Study semantic similarity of the concept is an important aspect in knowledge representation and information retrieval.Compute the edge weights using kernel function.Obtain the optimization function using hypergraph regularization framework.The function maps the vertices of graph to real numbers.Calculate the relative similarities of concepts by comparing the difference of corresponding values.Experiments show that the method for calculating the relative similarity between the concepts of ontology is efficient.
作者 高炜 梁立
出处 《微电子学与计算机》 CSCD 北大核心 2011年第5期15-17,共3页 Microelectronics & Computer
基金 国家自然科学基金项目(60903131)
关键词 本体 正则化模型 高斯核 逆多元二次核 ontology regularization framework gaussian kernel inverse multiquadric kernel
  • 相关文献

参考文献8

  • 1Zhou D, Huang J, SchOlkopf B. Beyond pairwise classification and clustering using hypergraphs[P]. Canada.. University of Waterloo, 2005. 被引量:1
  • 2Zhou Dengyong, Huang Jiayuan, Bernhard Scholkopf Learning with Hypergraphs: Clustering, Classification, and Embedding[C]// Proceedings of 20th Annual Conference on Neural Information Processing SysterrLs, 2.006, Vancouver / Whistler, Canada: IEEE 2006 : 1601-1608. 被引量:1
  • 3Liang Sun, Shuiwang Ji, Jieping Ye. Hypergraph spectral learning for multi--label classification[C]// Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. Las Vegas, Nevada, USA: ACM, 2008:668--676. 被引量:1
  • 4Chen Gang, Zhang Jianwen, Wang Fei, et al. Efficient multi-label classification with hypergraph regulariza tion[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL USA.. IEEE, 2009 (9):1658--1665. 被引量:1
  • 5Sameer Agarwal, Kristin Branson, Serge Belongie. Higher order learning with graphs[C]// Proceedings of the 23rd International conference on Machine Learning, Pittsburgh, PA: ICML, 2006: 17-24. 被引量:1
  • 6Zhou Dengyong, Huang Jiayuan, Bernhard Scholkopf. Learning from Labeled and Unlabeled Data on a Directed Graph[C]//Proceedings of the 22nd International Con ference on Machine Learning, Bonn, Germany.. ICMI., 2005 : 1041- 1048. 被引量:1
  • 7Isaac Pesenson. Varialional Splines and Paley-wiener Spaces on Combinatorial Graphs[J]. Constr Approx, 2009(29) : 1-21. 被引量:1
  • 8Craswell N, Hawking D. Overview of the TREC 2003 web track[C]// Text Retrieval Conference (TREC). 2003 Proceedings. [s. l.].-TREC,2003. 被引量:1

同被引文献88

  • 1ZHANG T,ANDO R. Analysis of spectral kernel design based semi-supervised learning[C]. In NIPS 18,2006. 被引量:1
  • 2Gao Wei, Zhang Yungang, Xu Tianwei, et al. Analysis forlearning a similarity function with ontology applications [ J].Journal of Information and Computational Science, 2012, 9(17):5311-5318. 被引量:1
  • 3Gao W, Xu T. Characteristics of optimal function for ontolo-gy similarity measure via multi-dividing [ J]. Journal of Mul-timedia, 2012, 7(8):1251-1259. 被引量:1
  • 4Gao W, Gao Y,Zhang Y. Strong and weak stability of k-partite ranking algorithms [J]. Journal of Information, 2012,15( 11A) ;4585-4590. 被引量:1
  • 5Xu Tianwei, Gan Jianhou, Zhang Yungang, et al. Gener-alization bounds for ranking algorithms via almost every-where stability [ C]//3rd International Conference on Com-puter Research and Development, 2011,Shanghai. NewYork:IEEE Xplore, 2011 :500-503. 被引量:1
  • 6Jia Zhiyang,Gao Wei, He Xiangguang. Generalizationbounds for ranking algorithm via query -level stabilitiesanalysis [ C] //Information and Management Engineering :Proceedings of the International Conference on Comput-ing, Information and Control (ICCIC 2011),Sepember 17-18,2011, Wuhan, China. Berlin : Springer-Verlag. 2011 :197-203. 被引量:1
  • 7MORK P, BERNSTEIN P. Adapting a Generic Match Algorithm to Align Ontologies of Human Anatomy [C] //20th International Conf. on Data Engineering. Los Alamitos, CA, USA: IEEE Comput Soc, 2004: 787-790. 被引量:1
  • 8FONSECA F, EGENHOFER M, DAVIS C, et al. Semantic Granularity in Ontology-Driven Geographic Information Systems [J]. AMAI Annals of Mathematics and Artificial Intelligence-Special Issue on Spatial and Temporal Granularity, 2002, 36(1-2): 121-151. 被引量:1
  • 9BOUZEGHOUB A, ELBYED A. Ontology Mapping for Web-Based Educational Systems Interoperability [J]. Interop- erability in Business Information Systems, 2006, 1(1): 73-84. 被引量:1
  • 10王雅讶,高炜,张云港,等.图推进排序学习算法[C].Shanghai:Proceedings of 2010 International Conference on Circuit and Signal Processing, 2010:368-371. 被引量:1

引证文献16

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部