期刊文献+

一种基于能量人工神经元模型的自生长、自组织神经网络 被引量:5

An Energy Artificial Neuron Model Based Self-growing and Self-organizing Neural Network
下载PDF
导出
摘要 本文结合近年生物学中神经科学的发展,针对神经胶质细胞对生物神经元网络的生长提供能量支持的特性,将神经胶质细胞的能量模型引入到人工神经元的概念模型中,提出了能量人工神经元(Energy artificial neuron,EAN)的概念模型,并给出了数学表述.同时,在能量人工神经元模型的基础上,实现了一种新型自生长、自组织人工神经元网络(EANbased self-growing and self-organizing neural network,ESGSONN),ESGSONN将神经元中的能量、网络的熵增量及样本与神经元权值的相似度的竞争作为生长的条件,并对最优生长点中的获胜神经元进行单位步长调整.ESGSONN实现了快速生长、精确的样本数据分布密度保持、死神经元少的特性.本文使用经典的16种动物实验(Ritter and Kohonen,1989)验证了ESGSONN的正确性,并通过同SOFM、GCS等自组织网络的对比实验验证ESGSONN网络的特性.最后,本文对ESGSONN在高维空间中的本质进行了讨论. In this paper,we established a new artificial neuron model called EAN (energy artificial neuron) based on the energy concept from the glial cells according to the recent achievements in the neuroscience field.We suggested a way to demonstrate EAN model in mathematics.In addition,we realized a self-growing and self-organizing neural network based on the EAN model called ESGSONN (EAN based self-growing and self-organizing neural network).ESGSONN considers the energy in EAN,the entropy productions in the network and the similarity (between the sample and neurons weights) as its conditions of growing and competitions.Its main features are described as below:rapid growing,probability density preserving and few superfluous neurons.A classical experiment of 16-kind animals (after Ritter and Kohonen,1989) proved ESGSONN can work correctly.We showed the new features of ESGSONN by comparing it with the traditional self-organizing networks such as SOFM and GCS.Finally,we argued about the essence of this network in the highdimensional space.
出处 《自动化学报》 EI CSCD 北大核心 2011年第5期615-622,共8页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2009AA062800 2009AA04Z163) 国家自然科学基金(60973063) 北京自然科学基金(4092028) 中央高校基本科研业务费专项资金(FRF-TP-09-016B)资助~~
关键词 自组织 生长网络 能量人工神经元 无监督学习 高维空间 聚类 Self-organizing growing network energy artificial neuron (EAN) unsupervised leaning high-dimensional space entropy clustering
  • 相关文献

参考文献26

  • 1Willshaw D J, Von D M C. How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London, Series B, Biological Sciences, 1976, 194(1117): 431-445. 被引量:1
  • 2Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1982, 43(1): 59-69. 被引量:1
  • 3Kangas J A, Kohnen T K, Laaksonen J T. Variants of self-organizing maps. IEEE Transactions on Neural Networks, 1990, 1(1): 93-99. 被引量:1
  • 4Fritzke B. Growing cell structures --- a self-organizing network for unsupervised and supervised learning. Neural Networks, 1994, 7(9): 1441-1460. 被引量:1
  • 5Fritzke B. Growing grid --- a self-organizing network with constant neighborhood range and adaption strength. Neural Processing Letters, 1995, 2(5): 9-13. 被引量:1
  • 6Fritzke B. A growing neural gas network learns topologies. Advances in Neural Information Processing System. Cambridge: The MIT Press, 1995. 625-632. 被引量:1
  • 7Choi D I, Park S H. Self-creating and organizing neural networks. IEEE Transactions on Neural Networks, 1994, 5(4): 561-575. 被引量:1
  • 8Martinetz T M, Schultan K J. A ``neural-gas'' network learns topologies. Artificial Neural Networks, 1991, 1: 397-402. 被引量:1
  • 9Blackmore J, Miikkulainen R. Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map. In: Proceedings of the IEEE International Conference on Neural Networks. San Francisco, USA: IEEE, 1993. 450-455. 被引量:1
  • 10Chow T W S, Wu S. Cell-splitting grid: a self-creating and self-organizing neural network. Neurocomputing, 2004, 57: 373-387. 被引量:1

同被引文献44

  • 1许少华,何新贵.基于函数正交基展开的过程神经网络学习算法[J].计算机学报,2004,27(5):645-650. 被引量:73
  • 2陈跃华,曹广益,朱新坚.PEMFC的Elman神经网络建模与模糊神经网络控制[J].能源技术,2005,26(4):146-149. 被引量:3
  • 3王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报,2006,32(4):630-635. 被引量:33
  • 4Fahlman S E, Lebiere C. The cascade-correlation learning architecture// Advances in Neural Information Processing Systems [M]. Los Altos, CA: Morgan Kaufmann, 1990:524-532. 被引量:1
  • 5Tun H M. Analysis of neural network based photo to caricature transformation using MATLAB [J]. Bahria University Journal of Information & Communication Technology, 2009, 2(1): 1-5. 被引量:1
  • 6Lee S W, Song H S. Emulation of spline networks through approximation of polynomials and step function of neural networks with cosine modulated symmetric exponential function[J]. Wreless Personal Communications, 2014, 2(1): 1-16. 被引量:1
  • 7Chandra B, Paul Varghese P. Applications of cascade correlation neural networks for cipher system identification [J]. Information Science and Engineering, 2007, 26:210-213. 被引量:1
  • 8Li Dazi, Hirasawa Kotaro, Hu Jinglu, Murata Junichi. Universal learning networks with multiplication neurons and its representation ability //Proc. of International Joint Conference on Neural Networks[C]. 2001:150-155. 被引量:1
  • 9Gao X Z, Wang X, Ovaska S J. Fusion of clonal selection algorithm and differential evolution method in training cascade-correlation neural network [J]. Neurocomputing, 2009, 72(10): 2483-2490. 被引量:1
  • 10Janson S, Middendorf M. A hierarchical partical swarm optimizer and its adaptive variant [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2005, 35(6): 1272-1282. 被引量:1

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部