摘要
The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reduction technology were investigated. In comparison to the conventional HE sintering processing, microwave sintering to W-15Cu can be achieved at lower sintering temperature and shorter sintering time. Furthermore, higher performances in microwave sintered compacts were obtained, but high microwave sintering temperature or long microwave sintering time could result in coarser microstructures.
The effects of microwave sintering and conventional H2 sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying & calcining-continuous reduction technology were investigated. In comparison to the conventional HE sintering processing, microwave sintering to W-15Cu can be achieved at lower sintering temperature and shorter sintering time. Furthermore, higher performances in microwave sintered compacts were obtained, but high microwave sintering temperature or long microwave sintering time could result in coarser microstructures.
基金
Funded by the Project for Science and Technology Plan of Wuhan City(200910321092)
the Youth Science Plan for Light of the Morning Sun of Wuhan City (200750731270)