期刊文献+

基于信息融合的自然灾害等级评估方法研究 被引量:3

Research on Assessment Method for Natural Disaster Loss Grade Based on Information Fusion
下载PDF
导出
摘要 为对自然灾害灾情等级进行准确评估,在BP神经网络模型的基础上,结合DS证据理论建立基于信息融合的自然灾害灾情等级评估模型。该模型通过对输入的灾害评估指标数据进行分类,建立网络组,对网络组的输出,建立对于各类信任度的基本概率分配函数,最后利用DS证据理论融合,从而实现灾害的最终等级评估。在MATLAB环境下,以我国45个自然灾害的灾情历史资料数据为训练样本进行模型训练,并对2009年自然灾害灾情进行评估测试。结果表明,该模型能改善单一BP神经网络不稳定、误差大的缺点,得到较优的结果。 To more accurately assess the grade of natural disasters,an information fusion assessment model for natural disaster grade has been built based on BP neural network and DS evidential theory.In this model,the input index data of natural disasters are firstly classified and the BP neural networks groups are constructed.And then the basic probability assignment functions with different confidence level are obtained according to the network group's outputs.Finally,a fusion is made with DS evidential theory and the final grade of natural disasters is obtained.Under MATLAB environment,the model is trained with the data of 45 historical natural disaster cases in China as the training samples,and tests are conducted on the model with the data of natural disasters in 2009.The results show that this model can obtain better assessment result by solving the problems of unstable results and poor precision of single BP neural network.
出处 《中国安全科学学报》 CAS CSCD 北大核心 2010年第11期3-10,共8页 China Safety Science Journal
基金 国家社会科学基金资助(09BTJ012) 湖南省社会科学基金资助(08YBB278) 教育部人文社会科学规划基金资助(07JA790084) 教育部人文社会科学青年基金资助(09YJC630065) 湖南省科技厅软科学重点项目(2008ZK2002)
关键词 自然灾害 信息融合 BP神经网络 DS证据理论 灾情评估 natural disaster information fusion BP neural network DS evidential theory disaster evaluation
  • 相关文献

参考文献18

二级参考文献108

共引文献438

同被引文献45

  • 1高燕,陈云翔,丁永生,汤兵勇.基于免疫遗传算法的洪灾神经网络评估模型[J].自然灾害学报,2006,15(1):110-114. 被引量:18
  • 2毛国敏,顾建华,吴新燕.地震灾害的分类和分级方法研究[J].地震学报,2007,29(4):426-436. 被引量:14
  • 3防灾减灾空间信息建设亟待加强[EB/OL].[2011-09-01].http://news.xinhuanet.com/society/2011-05/12/c_121406775.htm. 被引量:1
  • 4ZHANG QIU-YU,YANG HUI-JUAN,WANG PENG,et al.Fuzzyclustering based on semantic body and its application in Chinesespam filtering[J].JDCTA:International Journal of Digital ContentTechnology and its Applications,2011,5(4):1-11. 被引量:1
  • 5WEN KUN-LI,YOU MEI-LI,LEE B-Y.Apply grey relationalgrade and rough set theory for the factor weighting analysis in liverfunction[J].Journal of Convergence Information Technology,2011,6(9):420-428. 被引量:1
  • 6DORIGO M,STTZLE T.Ant colony optimization[M].北京:清华大学出版社,2005. 被引量:1
  • 7CHIANG CHUAN-WEN,HUANG YU-QING,LU GUO-QIN,et al.Ant-inspired search techniques for solving the zero-one knapsackproblem with multiple constraints[J].International Journal of Ad-vancements in Computing Technology,2011,3(4):242-255. 被引量:1
  • 8HOMBERGER J,GEHRING H.An ant colony optimization-basednegotiation approach for lot-sizing in supply chains[J].InternationalJournal of Information Processing and Management,2011,2(3):86-99. 被引量:1
  • 9DorigoM,StzleT.Antcolonyoptimization[M].北京:清华大学出版社,2005. 被引量:1
  • 10BucklandM.AItechniquesforgameprogramming[M].北京:清华大学出版社,2002. 被引量:1

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部