摘要
为对自然灾害灾情等级进行准确评估,在BP神经网络模型的基础上,结合DS证据理论建立基于信息融合的自然灾害灾情等级评估模型。该模型通过对输入的灾害评估指标数据进行分类,建立网络组,对网络组的输出,建立对于各类信任度的基本概率分配函数,最后利用DS证据理论融合,从而实现灾害的最终等级评估。在MATLAB环境下,以我国45个自然灾害的灾情历史资料数据为训练样本进行模型训练,并对2009年自然灾害灾情进行评估测试。结果表明,该模型能改善单一BP神经网络不稳定、误差大的缺点,得到较优的结果。
To more accurately assess the grade of natural disasters,an information fusion assessment model for natural disaster grade has been built based on BP neural network and DS evidential theory.In this model,the input index data of natural disasters are firstly classified and the BP neural networks groups are constructed.And then the basic probability assignment functions with different confidence level are obtained according to the network group's outputs.Finally,a fusion is made with DS evidential theory and the final grade of natural disasters is obtained.Under MATLAB environment,the model is trained with the data of 45 historical natural disaster cases in China as the training samples,and tests are conducted on the model with the data of natural disasters in 2009.The results show that this model can obtain better assessment result by solving the problems of unstable results and poor precision of single BP neural network.
出处
《中国安全科学学报》
CAS
CSCD
北大核心
2010年第11期3-10,共8页
China Safety Science Journal
基金
国家社会科学基金资助(09BTJ012)
湖南省社会科学基金资助(08YBB278)
教育部人文社会科学规划基金资助(07JA790084)
教育部人文社会科学青年基金资助(09YJC630065)
湖南省科技厅软科学重点项目(2008ZK2002)
关键词
自然灾害
信息融合
BP神经网络
DS证据理论
灾情评估
natural disaster
information fusion
BP neural network
DS evidential theory
disaster evaluation