摘要
利用纤维模型方法对无粘结预应力节段拼装桥墩进行了拟静力试验仿真分析,通过与试验结果的比较验证了计算方法的正确,然后进行了恒载轴压比、预应力筋配筋率、普通钢筋配筋率参数分析.在一定范围增大恒载轴压比时,承载能力和屈服力均有显著提高,但恒载轴压比太大时,只提高了屈服力,极限承载能力保持不变;随着恒载轴压比增大,累积能量耗散也逐渐增大.预应力筋配筋率在小范围内增大时,骨架曲线基本一致,但当预应力筋配筋率增大到一定程度时,承载力和屈服力有较大提高,累积能量耗散也显著增大.随着普通钢筋配筋率的提高,承载力和屈服力提高;能量耗散对普通钢筋配筋率比较敏感,随着配筋率的增大,能量耗散显著增大,可以通过增加普通钢筋配筋率来提高桥墩耗能能力,但同时残余位移增大.
The static test for unbound prestressing precast segmental bridge columns is simulated using the fiber modeling approach.The method is proved valid through comparison of the simulation results with the real-time test results.In the process,the parameter analysis on the dead load axial compression ratio,prestressing tendon ratio and mild bar ratio are conducted.It is found that the lateral ultimate strength and yield strength increase remarkably as the dead load axial compression ratio increases within the given limits.When the dead load axial compression ratio grows significantly large,the yield strength is to increase while the ultimate strength is to remain unchanged.It is also noted that the accumulated energy dissipation increases with the increment of the dead load axial compression ratio.The skeleton curve remains invariant when the prestressing tendon ratio increases within the given restraint.Both the lateral ultimate strength and yield strength increase as the prestressing tendon ratio increases to some extent,which also cause the accumulated energy dissipation to increase remarkably.Both the lateral ultimate strength and yield strength increase with the increase of mild bar ratio.The energy dissipation is found to be sensitive to mild bar ratio,and its increase is directly proportionate to the increasing of mild bar ratio.The energy dissipation can be enhanced by raising mild bar ratio,which,however,results in the increasing of residual displacement.
出处
《宁波大学学报(理工版)》
CAS
2011年第2期83-88,共6页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
桥梁工程结构动力学国家重点实验室开放基金(201002)
浙江省教育厅科研项目(Y201017490)
关键词
预制混凝土
节段施工
混凝土桥墩
抗震
precast concrete
segmental construction
concrete bridge piers
seismic resistance