摘要
采用舵和矢量推进器联合进行航向控制的新型水下航行器,实现高、低速下不同航向控制方式的多种运动模式。根据其结构特点和运动特性,运用欧拉角法建立6自由度运动学模型,针对纵倾角θ=±90°时存在奇异点的问题,采用四元数法进行解决,保证任意姿态下的运动求解。基于牛顿第二定律和拉格朗日方法建立多矢量推进水下航行器的6自由度非线性动力学模型,两种方法所推导的动力学模型完全一致,验证模型的正确性,并为控制系统的设计奠定基础。进一步采用四阶五级龙格—库塔积分算法进行动力学方程求解,解决水下航行器耦合非线性空间运动方程运算难和显示难的问题。通过多矢量推进水下航行器空间运动性能的计算和分析,进一步验证其运动学和动力学模型的有效性,并表明低速航行时采用矢量推进器控制航向和高速航行时采用舵控制航向可以较大地提高水下航行器的机动性能。
The new type of autonomous underwater vehicle(AUV) is equipped with rudders and vectored thrusters,which are combined to control the directions to realize multi-motion modes in different control modes at high speed and low speed respectively.Euler angle representation is used to establish 6-DOF kinematic model according to the structural and kinetic characteristics.In order to achieve the satisfactory performance with arbitrary angles,the quaternion method is used to solve the problem of existence of singularities when the pitch angles are °.Then nonlinear dynamic equations with 6-DOF of the vehicle are deduced based on the Newton second law and Lagrangian approach respectively.The dynamic models of the two methods are the same,which shows that the dynamic model of the vehicle is accurate and it lays a foundation for the control system design.Moreover,the Runge-Kutta algorithm is used to solve the dynamic equations,which clears up the difficulties of the computation and the display of coupled nonlinear motion equations.The kinematic model and dynamic model are proved to be valid through the computation and analysis of the spatial movement's capability,which shows that the maneuverability of the vehicle equipped with rudders and vectored thrusters is greatly enhanced.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2011年第5期93-100,共8页
Journal of Mechanical Engineering
基金
国家高技术研究发展计划(863计划
2006AA09Z235)
湖南省研究生科研创新(B090303)资助项目
关键词
矢量推进器
水下航行器
四元数法
非线性模型
Vectored thruster Autonomous underwater vehicle Quaternion method Nonlinear model