期刊文献+

Effects of cerium on microstructure and bonding strength of Cu-14Al-4.5Fe bronze plasma sprayed coating 被引量:3

Effects of cerium on microstructure and bonding strength of Cu-14Al-4.5Fe bronze plasma sprayed coating
原文传递
导出
摘要 Cu-14Al-4.5Fe bronze powders with and without 0.6% Ce were prepared and their coatings were fabricated on 45# carbon steel substrate by atmospheric plasma spraying. The effects of rare earth Ce on the coating interface bonding strength, coatings and bonding interface vertical sections microstructure were investigated by tensile machine, X-ray diffraction analysis, scanning electron microscopy (SEM) and electronic probe microanalysis (EPMA). The results showed that the shape of powders was more spherical like, and the coating’s hardness and interface bonging tensile strength would be improved to 8.9% and 17.4%, respectively, higher than that of the Cu-14Al-4.5Fe coating without 0.6% Ce added. The refined of κ phases, well distributed matrix phases in coatings and the promotion of Fe, Al elements diffusion led to the improvement in interface bonding strength and hardness of the Cu-14Al-4.5Fe coating with addition of 0.6% Ce, which hardened and strengthened the coating. Cu-14Al-4.5Fe bronze powders with and without 0.6% Ce were prepared and their coatings were fabricated on 45# carbon steel substrate by atmospheric plasma spraying. The effects of rare earth Ce on the coating interface bonding strength, coatings and bonding interface vertical sections microstructure were investigated by tensile machine, X-ray diffraction analysis, scanning electron microscopy (SEM) and electronic probe microanalysis (EPMA). The results showed that the shape of powders was more spherical like, and the coating’s hardness and interface bonging tensile strength would be improved to 8.9% and 17.4%, respectively, higher than that of the Cu-14Al-4.5Fe coating without 0.6% Ce added. The refined of κ phases, well distributed matrix phases in coatings and the promotion of Fe, Al elements diffusion led to the improvement in interface bonding strength and hardness of the Cu-14Al-4.5Fe coating with addition of 0.6% Ce, which hardened and strengthened the coating.
出处 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第4期363-369,共7页 稀土学报(英文版)
基金 supported by the National Natural Science Foundation of China (50804019)
关键词 rare earth Cu-14Al-4.5Fe alloy MICROSTRUCTURE bonding strength rare earths rare earth Cu-14Al-4.5Fe alloy microstructure bonding strength rare earths
  • 相关文献

参考文献16

二级参考文献20

共引文献27

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部