期刊文献+

新的门限RSA密码方案 被引量:9

NEW THRESHOLD RSA CRYPTOSYSTEMS
原文传递
导出
摘要 由于RSA的秘密钥d∈Zφ(n),以前的门限RSA密码体制的秘密共享方案都是以环Zφ(n)为背景结构建立的,但这会遇到固有困难:Zφ(n)不是域且φ(n)必须保密.本文提出一种新的门限RSA密码体制,用一般大素域代替环Zφ(n)作为门限方案的背景结构,从而完全避开了上述困难. Since the secret key of a RSA cryptosystem d∈Z φ(n) ,the secret sharing schemes of the previous threshold RSA cryptosystems were set up over the ring Z φ(n) .But It has natural difficulties: Z φ(n) is not a field and the φ(n) must be kept secret.The existing methods to surmount these difficulties need place rigorous restrictions on the structures of the RSA modulus n and can cause continuous multiplications of large integers,or need an algebraic extension of the ring Z λ(n) .We present a new threshold RSA scheme which instead of the ring Z φ(n) ,we use a general large prime field Z r as the background structure to set up the (t,l) threshold scheme.And then,the above difficulties are overcome and the scheme presented is more practical and efficient in this paper.
出处 《山东大学学报(自然科学版)》 CSCD 1999年第2期149-155,共7页 Journal of Shandong University(Natural Science Edition)
关键词 秘密共享 门限方案 密码体制 RSA 密码学 secret sharing threshold scheme cryptosystem RSA share
  • 相关文献

参考文献5

  • 1潘承洞,潘承彪著..初等数论[M].北京:北京大学出版社,1992:615.
  • 2王育民 何大可.保密学--基础与应用[M].西安:西安电子科技大学出版社,1992.. 被引量:1
  • 3Santis A D,IEEE Proc 26th ACM Sympo Theory of Computing,1994年,522页 被引量:1
  • 4潘承洞,初等数论,1992年 被引量:1
  • 5王育民,保密学.基础与应用,1990年 被引量:1

同被引文献62

  • 1[4]Boneh D,Franklin M.Efficient Generation of Shared RSA Keys[A].Proc of Crypto 97[C].Berlin:Springer-Verlag,1997:425-439. 被引量:1
  • 2[5]Gilboa N.Two Party RSA Key Generation[A].Wiener Med Proceedings of the Crypto 99[C].Berlin:Springer-Verlag,1999:116-129. 被引量:1
  • 3[6]Frankel Y,MacKenziei P D,Yun M.Robust Efficient Distributed RSA Key Generation[A].Proceedings of the 30th Annual ACM Symposium on Theory of Computing[C].New York:ACM Press,1998:663-672. 被引量:1
  • 4[7]Boneh D,Franklin M.Efficient Generation of Shared RSA Keys[J].Journal of the ACM,July 2001,48(4):702-722. 被引量:1
  • 5[8]Rabin T.A Simplified Approach to Threshold and Proactive RSA[A].Crypto 98[C].Berlin:Springer-Verlag,1998:89-104. 被引量:1
  • 6[10]Zhang R,Imai H.Round Optimal Distributed Key Generation of Threshold Cryptosystem based on Discrete Logarithm Problem[A].Applied Cryptography and Network Security[C].Berlin:Springer-Verlag,2003:96-110. 被引量:1
  • 7[11]A Shamir.How to Share a SecretJ[J].Communications of the ACM,1979,22 (11):612-613. 被引量:1
  • 8[12]Pedersen T.Non-Interactive and Information Theoretic Secure Verifiable Secret Sharing[A].Proc of the Crypto 91[C].Berlin:Springer-Verlag,1991:129-140. 被引量:1
  • 9Santis A D, Desmedt Y,Frankel.How to Share a Function Securely[C].Proceedings of 26th ACM Sympon Theory on Computing,1992.522-533. 被引量:1
  • 10Gennaro Y, Jarecki S, Krawezyk Y. Robust and Efficient Sharing of RSA Function[C]. Proc. CRYPTO96, Spring-Verlag, 1996.157-172. 被引量:1

引证文献9

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部