期刊文献+

基于带宽比特征的雷达辐射源信号识别

Radar Emitter Signal Recognition Based on Bandwidth Ratio Features
下载PDF
导出
摘要 提出了用信号带宽比特征识别雷达辐射源的新方法。通过两次对雷达辐射源信号进行平方处理,提取两次处理前后信号带宽的比值组成二维特征向量。利用四种常见的雷达辐射源信号进行的仿真实验结果表明,带宽比特征类内聚集性强,类间分离度大,能达到非常满意的正确识别率,证实了所提方法的有效性。 A novel approach which using the bandwidth ratio feature is proposed to recognize the radar emitter signal. A planar bandwidth ratio features vector is extracted by squaring the signal twice. Simulation result shows the bandwidth ratio features have small within-class distance and large between-class distance, and can achieve very satisfied accurate recognition rate through using four familiar radar signals. And the effectiveness of the proposed approach is confirmed
出处 《电子对抗》 2011年第2期10-12,44,共4页 Electronic Warfare
关键词 雷达辐射源 带宽比 信号识别 radar emitters bandwidth ratio signal recognition
  • 相关文献

参考文献3

二级参考文献11

  • 1张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875. 被引量:14
  • 2Bressan M, Vitria J. On the selection and classification of independent features [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1312-1317. 被引量:1
  • 3Zhang G E Neural networks for classification: a survey[J].IEEE Trans. on System, Man, and Cybernetics-Part C:Application and Reviews. 2000, 30(4): 451-462. 被引量:1
  • 4Kavalov D, Kalinin V. Neural network surface acoustic wave RF signal processor for digital modulation recognition[J]. IEEE Trans. on Ultrasonics, Ferroelectrics,and Frequency Control, 2002, 49(9): 1280-1290. 被引量:1
  • 5Riedmiller M., Braun H. A direct adaptive method for faster back propagation learning: The RPROP algorithm[A]. Proc. of IEEE Int. Conf. on Neural Networks[C].1993, 586-591. 被引量:1
  • 6Zhao J, Wang G Y, Wu Z E et al. The study on technologies for feature selection[A]. Proc. of 1st Int.Conf. on Machine Learning and Cybernetics [C]. 2002,689-693. 被引量:1
  • 7Molina L C, Belanche L, Nebot A. Feature selection algorithms: a survey and experimental evaluation [A].Proc. of Int. Conf. on Data Mining [C]. 2002, 306-313. 被引量:1
  • 8Guo G D, Dyer C R. Simultaneous selection and classifier training via linear programming: a case study for face expression recognition [A]. Proc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition [C]. 2003, 346-352. 被引量:1
  • 9卢增祥,李衍达.交互支持向量机学习算法及其应用[J].清华大学学报(自然科学版),1999,39(7):93-97. 被引量:41
  • 10吕铁军,王河,肖先赐.新特征选择方法下的信号调制识别[J].电子与信息学报,2002,24(5):661-666. 被引量:48

共引文献2298

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部