期刊文献+

基于小波分解和SVD降噪的齿轮箱特征提取研究 被引量:1

Gearbox feature extraction research based on wavelet decomposition and SVD noise reduction
下载PDF
导出
摘要 齿轮箱故障诊断的关键是对故障特征的提取。利用小波变换的多分辨特性,将齿轮箱振动信号进行分解及单支重构,获取原信号在不同频段上分布的详细信息,找出对应系统特征频率的尺度,并应用奇异值分解的方法对该尺度下的重构信号进行进一步的降噪处理,从中成功提取出信号的特征分量。 The fault feature extraction is the key in the gearbox fault diagnosis.The paper decomposes vibration signal of the gearbox and reconstructs the single branch by using the multi-resolution property of the wavelet transformation,obtains the detailed distribution information of original signal in different frequency bands,finds out the scale corresponding to the system characteristic frequency,and applies further noise reduction processing to the reconstructed signal under the scale with SVD method,thus to successfully extract the characteristic component.
出处 《起重运输机械》 2011年第4期37-40,共4页 Hoisting and Conveying Machinery
关键词 齿轮箱 故障诊断 特征频率 小波变换 奇异值分解 gearbox fault diagnosis characteristic frequency wavelet transformation SVD
  • 相关文献

参考文献7

二级参考文献30

  • 1耿中行,屈梁生.小波包原理及其在机械故障诊断中的应用[J].信号处理,1994,10(4):244-249. 被引量:23
  • 2李友荣,曾法力,吕勇,刘安中.小波包分析在齿轮故障诊断中的应用[J].振动与冲击,2005,24(5):101-103. 被引量:26
  • 3卢玉和,萧宝瑾.基于小波分析的微弱信号检测及其在Matlab中的仿真[J].雁北师范学院学报,2006,22(5):32-34. 被引量:5
  • 4Jing Lin, Feature extraction of machine sound using wavelet and its application in fault diagnosis [ J ] , NDT & E International, Volume 34, Issue 1, January 2001, Pages 25 - 30. 被引量:1
  • 5Javier Sanz, Ricardo Perera, Consuelo Huerta, Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms [ J ], Journal of Sound and Vibration, Volume 302, Issues 4 -5,22 May 2007, Pages 981 - 999. 被引量:1
  • 6[1]Donoho D L.De-noising by soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627. 被引量:1
  • 7[2]Berkner K,Wells R O. Wavelet transforms and denoising algorithms[J]. Signals,Systems and Computers, 1998,2(1):1 639-1 643. 被引量:1
  • 8[3]林京. 基于连续小波技术的机械动态信号处理[D]. 西安:西安交通大学机械工程学院,1999. 被引量:1
  • 9[4]Mallat S. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans Pattern Analysis and Machine Intelligence,1989,11(7):674-693. 被引量:1
  • 10[5]Konsstantinides K,Yao K. Statistical analysis of effective singular values in matrix rank determination[J]. IEEE Trans on Acoustics,Speech,and Signal Process,1988,36(5):757-763. 被引量:1

共引文献85

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部