期刊文献+

一种基于图像分割及邻域限制与放松的立体匹配方法 被引量:11

A Stereo Matching Method Based on K-means Segmentation and Neighborhood Constraints Relaxation
下载PDF
导出
摘要 提出了一种以K-均值分割为基础的立体匹配方法.该方法不仅可以根据图像的内容自动调整匹配窗口的形状,还可实现对参与匹配窗口的大小、数目和权重的智能调节.作者采用K-均值分割方法精确定位物体边界,保证匹配窗口位于同一物体内部;邻域限制与放松可以进一步根据图像内容灵活地运用匹配窗口周围的环境信息;两种方法的结合有效地提高了匹配过程中窗口选取的智能性.在国际立体视觉标准平台Middlebury网站中测试的结果证实该算法提取的深度图的错误率低于其它局部优化算法,接近全局优化算法,运行效率高于现有的全局优化算法,综合性能是出众的. The paper proposes a stereo matching method based on K-means Segmentation.Within the proposed method,more than one matching windows are involved in one corresponding task.Not only the shape but also the size,number and weight of each matching window can be modified intelligently according to the image content.K-means Segmentation was used to detect object edges and kept the matching window within a same object.Neighborhood Constraint and Relaxation Algorithm is further adopted to utilize the environment information.This combination tackles the problem of how to choose an appropriate matching window intelligently.The algorithm is tested using the Middlebury stereo test bed.It was proved that the error percentage of the depth map obtained by the algorithm is lower than other algorithms based on local optimization,approaching to global optimization algorithms.The efficiency of the algorithm is higher than other global optimization algorithms,the overall performance is outstanding.
出处 《计算机学报》 EI CSCD 北大核心 2011年第4期755-760,共6页 Chinese Journal of Computers
基金 北京市重点学科建设项目(XK100080537)资助
关键词 立体匹配 邻域限制与放松 K-均值分割 邻域权重设置 遮挡处理 stereo matching neighborhood constraint relaxation K-means segmentation neighborhood weight setting occlusion handling
  • 相关文献

参考文献1

二级参考文献9

  • 1吴翊 李永乐 等.应用数理统计[M].长沙:国防科技大学出版社,1997.135-144. 被引量:7
  • 2Kanade T.,Okutomi M..A stereo matching algorithm with an adaptive window:Theory and experiment.IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(9):920~932 被引量:1
  • 3Veksler O..Fast variable window for stereo correspondence using integral images.In:Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Madison,WI,USA,2003,556~561 被引量:1
  • 4Daniel S.,Szeliski R..Stereo matching with nonlinear diffusion.International Journal of Computer Vision,1998,28(2):155~174 被引量:1
  • 5Veksler O..Stereo matching by compact windows via minimum ratio cycle.In:Proceedings of the International Conference on Computer Vision,Vancouver,Canada,2001,540 ~547 被引量:1
  • 6Scharstein D.,Szeliski R..A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.International Journal of Computer Vision,2002,47(1):7~42 被引量:1
  • 7Boykov Y.,Veksler O.,Zabih R..Fast approximate energy minimization via graph cuts.IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(11):1222~ 1239 被引量:1
  • 8Sun J.,Zheng N.-N.,Shum H.-Y..Stereo matching using belief propagation.IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(7):787~800 被引量:1
  • 9徐彦君,杜利民,侯自强,金贵昌.基于相位的尺度自适应立体匹配方法[J].电子学报,1999,27(7):38-41. 被引量:15

共引文献31

同被引文献132

  • 1储昭辉,汪荣贵,张璇,张新龙.基于Retinex理论JPEG2000压缩图像增强方法[J].光子学报,2012,41(2):200-204. 被引量:2
  • 2朱庆,吴波,万能,徐志祥,田一翔.具有良好重复率与信息量的立体影像点特征提取方法[J].电子学报,2006,34(2):205-209. 被引量:14
  • 3王年,范益政,鲍文霞,韦穗,梁栋.基于图割的图像匹配算法[J].电子学报,2006,34(2):232-236. 被引量:27
  • 4郭龙源,夏永泉,杨静宇.RANK变换在立体匹配中的应用研究[J].系统仿真学报,2007,19(9):2121-2123. 被引量:9
  • 5J. Cech, R. Sara. Efficient sampling of disparity space for fast and accurate matching [C]. IEEE Proceedings of the Second International ISPRS Workshop (BenGOS 2007), Minneapolis, MN, USA, June 23, 2007. 1-8. 被引量:1
  • 6P. F. Felzenszwalb, R. Zabih. Dynamic programming and graph cut algorithms in computer vision [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (4): 721-740. 被引量:1
  • 7R. Szelisk, I. R. Zabih. An experimental comparison of stereo algorithms [C]. Proceedings of the International Workshop on Vision Algorithms: Theory and Practice, 2000. 1883:1-19. 被引量:1
  • 8M. Bleyer, M. Gelautz. Graph-cut-based stereo matching using image segmentation with symmetrical treatment of occlusions [J]. Signal Processing : Image Communication, 2007, 22 (2) : 127-143. 被引量:1
  • 9T. H. Cormen, C. E. Leiserson, R. L. Rivest et al.. Introduction to Algorithms (2nd Ed. ) [M]. MIT Press, 2001. 348-352. 被引量:1
  • 10D. Scharstein, R. Szeliski. A taxonomy and evaluation of dense two frame stereo correspondence algorithms [J]. InternationalJ. Computer Vision, 2002, 47(1-3): 7-42. 被引量:1

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部