期刊文献+

求解组合优化问题伊藤算法的收敛性和期望收敛速度分析 被引量:17

Convergence and Runtime Analysis of ITO Algorithm for One Class of Combinatorial Optimization
下载PDF
导出
摘要 文中作者主要针对一类组合优化问题,分析了伊藤算法的收敛性理论和达到最优解的期望运行时间.首先将研究的组合优化问题转化为图模型,在图模型的基础上研究了伊藤算法的各种算子设计方法,阐明了伊藤算法的漂移算子、波动算子的寻优过程,给出了几种算子转移所服从的概率分布;然后在转移概率的基础上,利用离散鞅的极限分布给出了伊藤算法几乎必然收敛行为分析;最后研究了1个粒子的情况下,伊藤算法达到最优解的期望运行时间的上界,其取决于粒子半径的设置,并结合具体的参数设置,分析了伊藤算法参数选择的重要性. This paper provides some theoretical results on the convergence and runtime of ITO algorithm for one class of combinatorial optimization.First the combinatorial optimization problem is shift to directed graphic model,which is the base to design the operator of ITO algorithm.The transform probability of wave operator and move operator is studied in detail.The analysis yields insight into the optimized process.The almost sure convergence to the global optimum is obtained by changing the search process of ITO algorithm to the discrete sub-martingale.Furthermore,the expected time need by 1 particle ITO algorithm for the considered class of combinatorial optimization is analyzed,and for the One-Max problem,the runtime is linear to the problem size.
出处 《计算机学报》 EI CSCD 北大核心 2011年第4期636-646,共11页 Chinese Journal of Computers
基金 国家自然科学基金项目(60873114) 中国博士后基金(20080440073) 天津市自然科学基金(09JCYBJC27700) 晨光计划(20065004116-03)资助
关键词 伊藤算法 收敛性分析 运行时分析 波动算子 漂移算子 ITO algorithms convergence analysis runtime analysis wave operator move operator
  • 相关文献

参考文献3

二级参考文献11

  • 1徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 2Nix A E,Vose M D.Modeling genetic algorithms with Markov chains[J].Annals Mathematics and Artificial Intelligence,1992,5(1):77-88. 被引量:1
  • 3Sutton R S,Butro A G.Reinforcement Learning:Introduction[M].Cambridge,MA:MIT Press,1998. 被引量:1
  • 4Holland J H.A mathematical framework for studying learning in classifier systems[J].Physica,1986,22D(1-3):307-317. 被引量:1
  • 5Dorigo M,Bersini H.A comparison of Q-learning and classifier systems[A].Proceedings of From Animals to Animats,Third International Conference on SIMULATION of Adaptive Behavior[C].MA:MIT Press,1994.248-255. 被引量:1
  • 6Qi D,Sun R.A multi-agent system integrating reinforcement learning,bidding and genetic algorithms[J].Web Intelligence and Agent Systems,2003,1(3-4):187-202. 被引量:1
  • 7Eriksson A,Capi G,Doya K.Evolution of metaparamters in reinforcement learning algorithm[A].Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems[C].Piscataway NJ:IEEE Press,2003.412-417. 被引量:1
  • 8Pettinger J E,Everson R M.Controlling genetic algorithms with reinforcement learning[A].Proceedings of the Genetic and Evolutionary Computation Conference[C].San Francisco,CA:Morgan Kaufmann,2002.692-692. 被引量:1
  • 9Watkins C J C H,Dayan P.Technical note:Q-learning[J].Machine Learning,1992,8(3-4):279-292. 被引量:1
  • 10张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件[J].中国科学(E辑),1997,27(2):154-164. 被引量:78

共引文献34

同被引文献126

引证文献17

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部