期刊文献+

一类二阶奇异微分方程边值问题正解的存在性

The existence of positive solutions to boundary value problems for singular second order differential equations
下载PDF
导出
摘要 研究一类二阶奇异微分方程(p(t)u′(t))′=q(t)f(u(t)),其中,f∈C(R+,R)有界。在满足边值条件u(′0)=0,u(M)=0下,应用临界点理论并结合分析的方法,证明了上述边值问题至少存在一个严格递减的正解。该结果推广了现有文献中的相关结论。 This paper deals with the existence of positive solutions to a class of singular second order differential euqation(p(t)u′(t))=q(t)f(u(t)) with boundary value condition u′(0)=0,u(M)=0,when f∈C(R+,R) is bounded and p(0)=0.By combination of the critical point theory with mathematical analysis,some sufficient conditions are given to ensure that there exist at least one nontrivial decreasing positive solution to the above boundary value problems.These results generalize some corresponding results in the literature.
出处 《佛山科学技术学院学报(自然科学版)》 CAS 2011年第2期23-30,共8页 Journal of Foshan University(Natural Science Edition)
基金 国家自然科学基金资助项目(10871053)
关键词 二阶奇异微分方程 正解 边值问题 临界点理论 second order singular differential equation positive solutions boundary value problems critical point theory
  • 相关文献

参考文献7

  • 1CONTI M,MERIZZI L,TERRACINI S. Radial solutions of superlinear equations in R^N, Part I :a global varia- tional approach[J]. Arch Rat Mech Anal, 2000,153 : 291-316. 被引量:1
  • 2HABETS P, GAUDENZI M,ZANOLIN F. Positive solutions of singular boundary value problems with indefinite weight[J]. Bull Belgina Math Soc Simon Stevin, 2002,9 : 607-619. 被引量:1
  • 3LIMA P M,KONYUKHOVA N B, SUKOV A I,et al. Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems[J]. Journal of Computational and Applied Mathematics, 2006,189:260-273. 被引量:1
  • 4BERESTYCKI H, LIONS P L, PELETIER L A. An ODE approach to the existence of positive solutions for semilinear problems in R^N[J]. Indiana Univ Math J, 1981,30 : 141-157. 被引量:1
  • 5BONHEURE D, GOMES J M, SANCHEZ L. Positive solutions of a s'eeond-order singular ordinary differential equation[J]. Nonlinear Analysis : TMA, 2005,61 ~ 1383-1399. 被引量:1
  • 6RACI-I~KOVek I,TOMEC EK J. Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics[J], Nonlinear Analysis TMA, 2010,72 : 2114-2118. 被引量:1
  • 7张恭庆著..临界点理论及其应用[M].上海:上海科学技术出版社,1986:316.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部