摘要
研究一类二阶奇异微分方程(p(t)u′(t))′=q(t)f(u(t)),其中,f∈C(R+,R)有界。在满足边值条件u(′0)=0,u(M)=0下,应用临界点理论并结合分析的方法,证明了上述边值问题至少存在一个严格递减的正解。该结果推广了现有文献中的相关结论。
This paper deals with the existence of positive solutions to a class of singular second order differential euqation(p(t)u′(t))=q(t)f(u(t)) with boundary value condition u′(0)=0,u(M)=0,when f∈C(R+,R) is bounded and p(0)=0.By combination of the critical point theory with mathematical analysis,some sufficient conditions are given to ensure that there exist at least one nontrivial decreasing positive solution to the above boundary value problems.These results generalize some corresponding results in the literature.
出处
《佛山科学技术学院学报(自然科学版)》
CAS
2011年第2期23-30,共8页
Journal of Foshan University(Natural Science Edition)
基金
国家自然科学基金资助项目(10871053)
关键词
二阶奇异微分方程
正解
边值问题
临界点理论
second order singular differential equation
positive solutions
boundary value problems
critical point theory