期刊文献+

带有非线性传染率的传染病模型动力学分析 被引量:1

Dynamic Analysis of Infectious Disease Model With Nonlinear Contagious Rate
下载PDF
导出
摘要 将推广的非线性传染率βIS/φ(I)引入具有常数输入的SIS型和SIRS型传染病模型中进行研究,希望得到其动力学性态的完整分析结果. The paper introduced the nonlinear infection rates into SIS and SIRS type of infectious disease model with constant input, trying to get the complete results of the dynamic behavior.
作者 陕振沛
出处 《海南师范大学学报(自然科学版)》 CAS 2011年第1期12-14,共3页 Journal of Hainan Normal University(Natural Science)
基金 西北民族大学研究生科研创新项目
关键词 传染病模型 平衡点 稳定性 持续性 infectious disease model Balance Stability persistent
  • 相关文献

参考文献9

  • 1Wang W, Ma Z. Global dynamics of an epidemic model with delay[ J ]. Nonlinear Analysis:ILeal World Applications,2002,3:809-834. 被引量:1
  • 2Wang W. Global Behavior of an SEIRS epidemic model time delays[J ]. Appl Math Lett,2002,15:423-428. 被引量:1
  • 3Thieme IL H. Persistence under relaxed point-dissipativity (with applications to an endemicmodel)[ J ]. SIAM J Math Anal, 1993,24:407-435. 被引量:1
  • 4张娟,李建全,马知恩.带有种群密度制约接触率的SIR流行病模型的全局分析(英文)[J].工程数学学报,2004,21(2):259-267. 被引量:13
  • 5Zhang J, Ma Z. Global dynamics of an SEIR epidemic model with saturating contactrate[ J ]. Math Biol,2003,185: 15-32. 被引量:1
  • 6Liu W M , Hethcote H W, Levin S A. Dynamical behav- ior of epidemiological model withnonlinear incidence rates [J ]. J Math Bio1,1987,25:359-380. 被引量:1
  • 7Liu W M, Levin S A, Iwasa Y. In^ouence of nonlinear incidence rates upon the behavior of SIRSepidemiological models[J ]. J Math Biol, 1986,23:187-204. 被引量:1
  • 8Ruan S, Wang W. Dynamical behavior of an epidemic model with a nonlinear incidence rate[ J ]. J Di^R Equs, 2003,188:135-163,. 被引量:1
  • 9Derrick W R, van den Driessche P. A disease transmission model in a nonconstant popula-tion[ J ]. J Math Biol,1993, 31:495-512. 被引量:1

二级参考文献14

  • 1Brauer F, van den Driessche. Models for transmission of disease with immigration of infectives[J]. Math Biosci, 2001; 171:143 - 154 被引量:1
  • 2Gao L Q, Hethcote H W. Disease transimission models with density-dependent demographics[J]. J Math Biol, 1992 ;30: 717 - 731 被引量:1
  • 3Greenhalgh D. Some thresholdand stability results for epidemic models with a density dependent death rate[J]. Theor Pop Biol,1992;42:130- 151 被引量:1
  • 4Bremermann H J, Thieme H R. A competitive exclusion principle for pathogen virulence[J]. J Math Biol, 1989 ;27:179 - 190 被引量:1
  • 5Hale J K. Ordinary differential equations[M]. New York: Wiley-Interscience,1969 被引量:1
  • 6Thieme H R. Convergence results and a Poincaré-Bendixson trichotomy for asymptotcally autonomous differential equations[J]. J Math Biol, 1992 ;30:755 - 763 被引量:1
  • 7Jeffries C, Klee V, P van denDriessche. Whenis a matrixsignstable[J]. CanJ Math,1997;29:315-326 被引量:1
  • 8Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J].J Math Biol, 1992; 30: 693 - 716 被引量:1
  • 9Hethcote H W. Three basic epidemiological models[M]. In: Levin S A, Hallam T G, Gross L J et al .Applied Mathmatical Ecology; Biomathematics, Springer Berlin, 1989; 18:119 - 114 被引量:1
  • 10Thieme H R, Castillo-Chavez C. On the role of variable infectivity in the dynamics of the human immunodeficiency virus epidemic[M]. In: Castillo-Chavez C et al . Mathematical and statistical approaches to AIDS epidemiology. (Lecr Notes Biomath), Berlin He 被引量:1

共引文献12

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部