期刊文献+

论时滞混沌系统独立于时滞的稳定性判据

On Delay-independent Stability Criteria for Time-delay Chaos Systems
原文传递
导出
摘要 混沌控制是混沌运动在探险中的一个新的领域,而且它在混沌应用中是至关重要的。直到现在,许多不同的技术和方法已经被计划达成混沌控制,正如OGY方法、冲击的控制方法、微分几何学的方法和线性态反馈等等。时滞系统常在工程学、生物学、经济学和其他的学科中被遇到。在延伸的机器人稳定和控制理论研究方面,时滞控制系统引起了人们更新的兴趣。运用Razumikhin定理研究时滞混沌系统在标准反馈控制下的稳定性,得到了两条不依赖于时滞的稳定性判据。并通过实例验证了所得结果。 Chaos control is a new field in explorations of chaotic motions and it is crucial in applications of chaos.Until now,many different techniques and methods have been proposed to achieve chaos control,such as OGY method,impulsive control method,differential geometric method and linear state feedback,etc.Time-delay systems are frequently encountered in engineering,biology economy and other disciplines.In the wake of intensive research on robust stability and control theory.The stability and control of time-delay systems received renewed interests.The stability of time-delay chaotic systems via standard feedback control is studied,the approach of the study is based on Razumikhin Theorem.Two delay-independent stability criteria via SFC are derived.A numerical example is discussed to illustrate the advantage of the obtained results.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2011年第4期149-153,共5页 Journal of Wuhan University of Technology
基金 国家自然科学基金(10771021)
关键词 时滞 混沌系统 反馈控制 稳定性 time-delay chaotic system feedback control stability
  • 相关文献

参考文献11

  • 1Ou E, Grebogi C, York J A. Controlling Chaos[J]. Phys Rev I.ett, 1990,64:1196-1199. 被引量:1
  • 2Mackey M, Glass I.. Oscillation and Chaos in Physiological Control System[J].Science, 1997,197:287-289. 被引量:1
  • 3FarmerJ. Chaotic Attractors of Infinite dimensional Dynamic Systems[J].Physica D, 1982(4) :366-393. 被引量:1
  • 4Boe E, Chang H. Transition to Chaos from a Two-torus in a Delayed Feedback System[J]. Int J Bifurcation and Chaos, 1991,1(1) ,67-81. 被引量:1
  • 5I.u H, He Z. Chaotic Behavior in First-order Autonomous Continuous-time Systems with Time-delay[J]2. IEEE Trans Circuit Syst,1996,43:700-702. 被引量:1
  • 6Bunner, MeyerT, KittelA,etal. Recovery of the Time evolution Equation of Time delay Systems from TimeSeries[J]. Phys Rev E, 1997,56(5):3-9. 被引量:1
  • 7Konishi K, Kokame H. I.earning Control of Time delay Haotic Systems and Its Applications[J]. Int J Bifurcation and Chaos, 1998(8) :2457-2465. 被引量:1
  • 8Chen G,Yu H. On Time delayed Feedback Control of Chaotic Systems[J]. IEEE Trans Circuit Syst,1999,46:767 772. 被引量:1
  • 9Sun J T. Some Global Synchronization Criteria for Coupled Time delay Systems via Uni-directional Linear Error Feed back Approach[J]. Chaos Solitions nd Fractals,2004,19(4) :789 794. 被引量:1
  • 10Sun J T. Delay dependent Stability Criteria for Time delay Chaotic Systems via Time delay Feedback Controi[J]. Chaos Solitions and Fractals,2004,21 : 143-150. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部