期刊文献+

动力系统在链回复集上的拓扑稳定性 被引量:1

Topological stability of chain recurrent sets
原文传递
导出
摘要 本文证明,紧度量空间上的同胚,若在链回复集上可扩且具有伪轨跟踪性,则是链拓扑稳定的. It is proved that for any homeomorphism on a compact metric space, if it has the shadowing property and it is expansible on chain recurrent set, then it is chain topologically stable.
作者 朱圣芝
出处 《中国科学:数学》 CSCD 北大核心 2011年第4期317-322,共6页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10871019)资助项目
关键词 链回复 伪轨跟踪 可扩 拓扑稳定性 chain recurrent shadowing expansive topologically stable
  • 相关文献

参考文献14

  • 1朱圣芝.紧流形上Ω拓扑稳定同胚的性质[J].北方交通大学学报,2001,25(6):88-90. 被引量:2
  • 2Zbigniew Nitecki.On semi-stability for diffeomorphisms[J]. Inventiones Mathematicae . 1971 (2) 被引量:1
  • 3Hurlery M.Consequences of topological stability. Journal of Differential Equations . 1984 被引量:1
  • 4Moriyasu K,Sakai K,Sumi N.Vector fildes with topological stability. Transactions of the American Mathematical Society . 2001 被引量:1
  • 5Sakai K.Pseudo-orbit tracing property and strong transversality of di?eomorphisms on closed manifolds. Osaka Journal of Mathematics . 1994 被引量:1
  • 6Munkress J.Obstractions to the smoothing of priecewise-di?erentiable homeomorphism. Annals of Mathematics . 1960 被引量:1
  • 7Aoki N.Topics in Gerneral Topology. . 1989 被引量:1
  • 8Hayashi S.Connecting invariant manifolds and the solution of the C1stability conjecture and Ω-stability conjecture for?ows. Annals of Mathematics . 1997 被引量:1
  • 9Yano K.Topologically Stable Homeomorphism of the Circle. Nagoya Mathematical Journal . 1980 被引量:1
  • 10Ma?é,R.An ergodic closing lemma. Annals of Mathematics . 1982 被引量:1

二级参考文献2

  • 1张筑生.微分动力系统原理[M].北京:科学出版社,1998.285-310. 被引量:1
  • 2张筑生,微分动力系统原理,1998年,285页 被引量:1

共引文献1

同被引文献11

  • 1张云,朱培勇.度量空间中的链回归点与ω-极限点[J].西南民族大学学报(自然科学版),2007,33(3):469-472. 被引量:3
  • 2儿玉之宏,永见启应著.方嘉琳译.拓扑空间论[M].北京:科学出版社.2001.50-55. 被引量:8
  • 3BHATIA N P, SZEGO G P. Stability Theory of Dynamical[M]. Berlin, Springer, 1970. 被引量:1
  • 4AUSLANDER J. On stability of closed sets in dynamical systems [ C ]/ / Seminar on Differential Equations and Dynamical Systems Ⅱ. Lecture Notes in Math 144, Berlin: springer 1970: 1. 被引量:1
  • 5SIBIRSKY K S. Introduction to Topological Dynamics [M]. Groningen, Netherlands: Noordhoff International Publishing, 1975. 被引量:1
  • 6NEMYTSKII V V, STEPANOV V V. Qualitative Theory of Differential Equations [M].rinceton, NJ: Princeton University Press, 1960. 被引量:1
  • 7URA T. Sur le Courant Ext6rieyr~une R6gion Invariqnte[J].nk Ekv, 1959, 2:105. 被引量:1
  • 8YUN C H, AHYOUNG K, SUH P J. Some remarks on chain prolongations in dynamical systems [J]. Journag of ~he Chungcheong Mathematical Society, 1999, 32: 351. 被引量:1
  • 9SOUZA J A. Prolongational limit sets of control systems [J].urnal of Differential Equations, 2013, 254: 2183. 被引量:1
  • 10陈文成.流的Ω-极限集[J].数学学报(中文版),1999,42(3):559-562. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部