期刊文献+

基于主元分析和聚类的直线检测算法 被引量:4

Approach for line detection based on principal component analysis and clustering
下载PDF
导出
摘要 针对现有的直线检测算法中,基于霍夫变换类算法开销大且易产生虚假结果,基于链码跟踪类方法鲁棒性和适应性较差的问题,提出一种新的直线检测算法。对边缘图像做分块链码跟踪产生链码串,然后对链码串做主元分析(PCA)构造线段,最后采用聚类方法合并线段以产生直线。实验结果表明,该算法速度较快,检测结果较理想,且对较复杂、细节丰富的图像也具有良好的检测结果。 In the existing line detection methods,those based on Hough Transformation(HT) have a huge cost and always bring false results,and others based on chain tracing are weak on robustness and adaptability.This paper proposed a new approach for line detection,in which,the chain was generated by chain tracing in edge image block by block,then the Principal Component Analysis(PCA) was used on the chain to construct segments,at last the lines were got by merging the segments through clustering.The experimental results show the approach is fast and gives good results,and especially it performs well in highly complex and detail rich images.
出处 《计算机应用》 CSCD 北大核心 2011年第5期1202-1204,1208,共4页 journal of Computer Applications
基金 杭州电子科技大学科研项目科研启动基金资助项目(KYS075609066)
关键词 直线检测 主元分析 链码跟踪 线段 聚类 line detection Principal Component Analysis(PCA) chain tracing segment cluster
  • 相关文献

参考文献12

二级参考文献54

共引文献102

同被引文献38

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部