期刊文献+

若干二元周期序列的紧错线性复杂度 被引量:2

Tight error linear complexity of periodic binary sequences
下载PDF
导出
摘要 综合线性复杂度、k错线性复杂度、k错线性复杂度曲线和最小错误minerro(rS)的概念,提出m紧错线性复杂度的概念。序列S的m紧错线性复杂度是一个二元组(km,LCm)。序列S的k错线性复杂度曲线的第m个跃变点对应的km值和对应km错线性复杂度LCm,称为序列S的m紧错线性复杂度。通过使用简洁的cost二维结构,给出了周期为2n的二元序列的紧错线性复杂度算法,并证明具有Stamp-Martin模式的线性复杂度算法均可以简单地推广为求紧错线性复杂度的算法。与现有k错线性复杂度算法不同,该算法中省去了原来序列元素的运算。在王-张-肖算法基础上,通过使用cost二维结构,给出了周期为pn的二元序列的紧错线性复杂度算法,其中p是一个素数,2是一个模p2的本原根。 Based on the earlier notions of linear complexity,k-error linear complexity,k-error linear complexity profile and minerror,the concept of m-tight error linear complexity is presented to study the stability of the linear complexity of sequences. The m-tight error linear complexity of sequence S is defined as a two tuple (km,LCm),which is the m-th jump point of the k-error linear complexity profile of sequence S.An algorithm is given for the m-tight error linear complexity of binary sequences with period 2n by using the modified cost different from that used in the Stamp-Martin algorithm.The new algo-rithm is free of computations relating the sequence elements.Based on the Wang-Zhang-Xiao algorithm,an efficient algorithm for computing m-tight error linear complexity of binary sequences with period pn is given,where p is a prime and 2 is a primitive root modulus p2.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第10期49-53,共5页 Computer Engineering and Applications
基金 浙江省自然科学基金No.Y1100318 No.R1090138 上海市信息安全综合管理技术研究重点实验室开放课题(No.AGK20090077)~~
关键词 周期序列 线性复杂度 K错线性复杂度 m紧错线性复杂度 periodic sequence linear complexity k-error linear complexity m-tight error linear complexity
  • 相关文献

参考文献33

  • 1Blackbum S R.Fast rational interpolation,Reed-Solomon decoding and the linear complexity profiles of sequences[J].IEEE i Transactions on Information Theory,1997,43:537-548. 被引量:1
  • 2Massey J L.Shift register synthesis and BCH decoding[J].IEEE Transactions on Information Theory, 1969,15( 1 ) : 122-127. 被引量:1
  • 3Games R A, Chan A H.A fast algorithm for determining the complexity of a binary sequence with period 2n[J].IEEE Transactions on Information Theory, 1983,29( 1 ) : 144-146. 被引量:1
  • 4Ding C,Xiao G,Shan W.The stability theory of stream ciphers[M]. Berlin Heidelberg:Springer-Verlag, 1991:85-88. 被引量:1
  • 5Kolokotronis N, Rizomiliotis P, Kalouptsidis N.Minimum linear span approximation of binary sequences[J].IEEE Transactions on Information Theory,2002,48:2758-2764. 被引量:1
  • 6Xiao G, Wei S, Lam K Y, et al.A fast algorithm for determining the linear complexity of a sequence with period pn over GF(q)[J]. IEEE Transactions on Information Theory, 2000,46 (6) : 2203-2206. 被引量:1
  • 7Wei S, Xiao G, Chen Z.A fast algorithm for determining the minimal polynomial of a sequence with period 2pn over GF(q)[J]. IEEE Transactions on Information Theory, 2002,48 (10) : 2754-2757. 被引量:1
  • 8Chen H.Reducing the computation of linear complexities of periodic sequences over GF(pn)[J].IEEE Transactions on Information Theory,2006,52(12) :5537-5539. 被引量:1
  • 9Meidl W.How many bits have to be changed to decrease the linear complexity?[J].Des Codes Cryptogr,2004,33: 109-122. 被引量:1
  • 10Niu Z,Xiao G.Analysis of the linear complexity and its stability for 2pn-periodic binary sequences[J].lEICE Trans Fundamentals, 2005, E88-A(9) : 2412-2418. 被引量:1

二级参考文献69

共引文献36

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部