期刊文献+

关系研究的新取向:社会网络分析 被引量:29

A New Approach of Relation Research: Social Network Analysis
下载PDF
导出
摘要 社会网络分析(Social Network Analysis,SNA)是用社会实体之间的关系来描述、解释和预测社会现象的一种研究取向。SNA提供了一种深入探究社会环境特征及其对个体心理发展影响的方法。本文基于SNA的发展历程,依次介绍了中心性分析、小团体分析、位置分析、QAP以及统计模型法。SNA在社会学研究中得到了较多应用,近年来在心理学研究中开始受到重视。 Our contacts with other people can shape our view of the world,reinforce our identity,and the interactions provides us with all kinds of opportunities and resources to get things done.Traditional research mainly uses attribute data which reflect an individual's attitude,viewpoints and behaviors to study the relation.Social network analysis(SNA) is a new approach which focuses on the connections among social entities,especially the relational links and structures neglected in the traditional relation research.It argues that social context contains social ties and connections,not the total of different units simply.SNA uses relational data rather than attribute data to study the relation.Relational data are the contacts,ties,connections which relate one person to another and can't be reduced to the properties of the individual themselves.SNA provides the means for deriving a more complete view of a given social environment.This paper reviewed some functions of social network analysis in terms of psychology.Fundamental functions of social network analysis include centrality analysis which can reflect one's status and power,clique analysis which can assign individuals to subgroups,position analysis which can find the similar status or power's sets,and QAP which is the method of correlation and regression analysis to explain the relationships of different relational matrixes.Furthermore,SNA can also analyze the relationships between attribute data and relational data by the statistical models.Until now,the models mainly includes p1 model(log-linear model) which allows us to detect the dyadic directed relation,p2 model(random effects model) which allows us to study the attribute covariates of nominators and their targets between dyads,and p* model(exponential random graph model) which allows us to study network structure and the attribute covariates.UCINET and StOCNET are the two main kinds of software to execute these analyses.Social network analysis provides tools that can be used to answer
出处 《心理科学》 CSSCI CSCD 北大核心 2011年第2期499-504,共6页 Journal of Psychological Science
基金 全国教育科学"十一五"规划教育部重点课题(DBA070073) 国家自然科学基金项目(30970905) 教育部人文社会科学重点研究基地重大招标项目(08JJDXLX270) "十一五"强化建设重点学科(发展与教育心理学)建设经费的资助
关键词 社会网络分析 关系数据 中心性分析 小团体分析 p2模型 p*模型 social network analysis relational data centrality analysis clique Analysis p2 model p* model
  • 相关文献

参考文献27

  • 1陈光辉..中小学生欺负/受欺负的本土化内涵、基本特点及其与同伴背景的关系[D].山东师范大学,2010:
  • 2刘军..社会网络分析导论[M],2004.
  • 3罗家德著..社会网分析讲义[M].北京:社会科学文献出版社,2010:327.
  • 4Alba, R. D. (1973). A graphtheoretic definitions of a sociometric clique. Journal of Mathematical Sociolog.v, 3, 113- 126. 被引量:1
  • 5Boer, P., Huisrnan, M., Snijders, T. A. B., Steglich, Ch., Wiehers, L. H. Y., & Zeggelink, E. P. H. (2006). StOCNET: an open software system for the advanced statistical analysis of social netzmrks (Version 1.7). Groningen: ICS / SciencePlus. 被引量:1
  • 6Eorgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). UCINET 6.0 for windows: users' guide. Retrieved March 4, 2010, from http://www, analytietech, com/ueinet/help, htm. 被引量:1
  • 7Butts, C. T. (2008). Social network analysis: a methodological introduction. Asian Journal of Social Psychology, 11 (1), 13 41. 被引量:1
  • 8Cairns, R. B., Leung, M., Buchanan, L., & Cairns, B. D. (1995). Friendships and social networks in childhood and adolescence: fluidity, reliability, and interrelations. Child Development, 66(5), 1330-1345. 被引量:1
  • 9Ellis, W. E., & Zarbatany, L. (2007). Peer group status as a moderator of group influence on children' s deviant, aggressive, and prosocial behavior. Child Development, 78(4), 1240 - 1254. 被引量:1
  • 10Espetage, D. L., Green Jr. H. D., & Wasserman, S. (2007). Statistical analysis of friendship patterns and bullying behaviors among youth. New Directions fou Child and Adolescent Development, 118, 61-75. 被引量:1

同被引文献516

引证文献29

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部