期刊文献+

全局混沌杂交的粒子群优化算法及应用 被引量:1

An Entirely Chaotic and Cross Particle Swarm Optimization Algorithm and Application
下载PDF
导出
摘要 提出一种新的混沌粒子群优化算法(EC-CPSO),该算法在基本混沌粒子群优化算法(CPSO)基础之上,将粒子速度计算公式中的随机数用混沌随机序列来替代,同时应用早熟判断机制,在对最优粒子进行混沌化处理之外,对其余粒子进行杂交处理,提高了算法的寻优能力,有效避免算法陷入局部最优并防止过早收敛.将之用于(N+M)容错系统优化模型证明该算法与CPSO相比具有一定的优势. An entirely chaotic and cross particle swarm optimization(EC-CPSO) algorithm is proposed based on the chaos particle swarm optimization(CPSO) algorithm.In order to improve the searching efficiency and deal with the problems of trapped in local convergence and premature,the random numbers of the classical PSO algorithm are substituted by chaotic sequences.By means of the premature judging method,when the algorithm gets into the local convergence,EC-CPSO can start the chaos researching for the best particle and cross the other particles.The experimental results demonstrate that the new algorithm has better performance for solving the optimal model-(N+M) fault-tolerant system than the CPSO algorithm.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2010年第4期25-29,共5页 Journal of Natural Science of Hunan Normal University
基金 广东省自然科学基金资助项目(915104070100002) 广东省科技计划基金资助项目(2009B010800053)
关键词 混沌 早熟 杂交 容错模型 chaos premature cross (N+M) fault-tolerant system
  • 相关文献

参考文献8

二级参考文献64

共引文献342

同被引文献8

  • 1Poli R, Kenedy J, Blackwell T. Particle swarm optimization[J].Swarm Intelligence,2007,1(1) :33-57. 被引量:1
  • 2Wen L, Meng F H.An improved PSO for the multi-depot vehicle routing problem with time windows[C]// IEEE pacific-asia workshop on computational computational intelligence and industrial application, 2008. 被引量:1
  • 3Mendes R, Kennedy J, Neves J. Watch thy neighbor or how the swarm can learn from its environment [C]//Proceedings of IEEE Swarm Intelligence Symposium 2003(SIS 2003), 2003. 被引量:1
  • 4Ai J, Kachitvichyanukul V. A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery [J]. Computers & Operations Research, 2009, 36(5):1693-1702. 被引量:1
  • 5Zander J. Performance of optimum transmitter power control in cellular routing systems[J]. IEEE Transactions on Vehicular Technology, 1992,41(1):57-62. 被引量:1
  • 6Shanmugam G, Ganesan P. A hybrid particle swarm optimization with genetic operator for vehicle routing problem[J].Computer and Graphics, 2010,1(4):181-188. 被引量:1
  • 7Zhang F, Sun H Q, Xu L,et al. Hardware-accelerated particle swarm maps [J]. International Journal of Image and Graphics, 2008, 8 (2):223-241. 被引量:1
  • 8温惠英,孙博.基于离散粒子群算法的协同车辆路径问题[J].公路交通科技,2011,28(1):149-153. 被引量:22

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部