期刊文献+

基于EICS-LBP与统计边缘主色对的场景分类算法

Scene classification algorithm based on EICS-LBP and edge domain color pairs visual descriptors
下载PDF
导出
摘要 针对场景分类问题,提出一种基于图像局部边缘区域的边缘改进中心对称二值模式(edge improvedcenter symmetric local binary pattern,EICS-LBP)与统计边缘主色对特征结合扩展潜在语义分析(probabilistic latent semantic analysis,PLSA)模型的场景分类算法。该方法首先提取图像局部边缘稠密采样区域的EICS-LBP与统计边缘主色对特征;然后对两类特征分别聚类形成视觉词汇表,进而用词袋模型描述图像;之后利用扩展PLSA模型对图像词袋模型进行潜在语义挖掘;最后利用K最近领域(K-nearest neighbors,KNN)分类器进行场景分类,得到测试图像集的混淆矩阵。多类场景图像的实验表明,该方法不需要对场景内容进行人工标注,具有较高的分类准确率,且对具有边缘轮廓的彩色图像分类精度较高。 A novel approach based on the edge improved center symmetric local binary pattern(EICS-LBP) and the statistical domain color pairs of edge as visual features combined with the extended probabilistic latent semantic analysis(PLSA) model for scene classification is presented.First,the features are extracted from edge dense sampling regions as visual words,and then these visual words are formed by clustering respectively.After that,the bag-of-words model is used to represent the image.And then,the potential semantic is excavated by the extended PLSA model.Finally,the confusion matrix is obtained by K-nearest neighbors(KNN) classifier.Experiment results show that this method achieves higher accuracies,especially performs well in the color images with much edge contours and also it does not require experts to annotate the scene content in advance.
作者 胡正平 戎怡
出处 《系统工程与电子技术》 EI CSCD 北大核心 2011年第4期919-924,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61071199) 河北省自然科学基金(F2010001297 F2008000891) 中国博士后科学基金(20080440124) 第二批中国博士后科学基金(200902356)资助课题
关键词 场景分类 局部二值模式 边缘特征 主色特征 视觉单词 扩展潜在语义分析模型 scene classification local binary pattern(LBP) edge feature dominant color feature visual words extended probabilistic latent semantic analysis(PLSA) model
  • 相关文献

参考文献16

  • 1Foster, David H, Marin-Franch, et al. Approaching idealobserver efficiency in using color to retrieve information from natural scenes [J]. Optics and Image Science, and Vision, 2009,26(11) :14- 24. 被引量:1
  • 2于永健,王向阳,吴俊峰.基于颜色复杂度的加权颜色直方图图像检索算法[J].小型微型计算机系统,2009,30(3):507-511. 被引量:10
  • 3孙君顶,毋小省.纹理谱描述符及其在图像检索中的应用[J].计算机辅助设计与图形学学报,2010,22(3):516-520. 被引量:21
  • 4Belongie S, Malik J, Puzicha J. Shape matching and object rec- ognition using shape contexts[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24 (24) : 509 - 522. 被引量:1
  • 5Oliva A, Torralba A. Modeling the shape of the scenel a holistic representation of the spatial envelope[J]. International Jour-nal of Computer Vision ,2001,42(3) : 145 - 175. 被引量:1
  • 6Vogel J, Schiele B. Natural scene retrieval based on a semantic modeling step [C] // Proc. of International Conference on Image and Video Retrieval, 2004 : 207 - 215. 被引量:1
  • 7Li F F, Perona P. A Bayesian hierarchical model for learning mtural scene categories[C]//Proc, of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005:524 -531. 被引量:1
  • 8Lowe D. Distinctive image features from scale-invariant keypoints[J]. International Journal on Computer Vision, 2004,60(2) :91 - 110. 被引量:1
  • 9Li F F, CVPR 2007 tutorial bag of words[EB/OL]. E2007 - 06 - 241. http//vision, cs. princeton. Edu/documents/CVPR2OOT_tuto- rial bag._otwords, ppt. 2007. 被引量:1
  • 10Bosch, Anna, Zisserman, et al. Scene classification using a hybrid generative/discriminative approach [J]1. IEEE Trans. on Pattern Analysis and Machine InteUigence ,2008,30( 4 ) : 717 -727. 被引量:1

二级参考文献55

  • 1邢强,袁保宗,唐晓芳.一种基于加权色彩直方图的快速图像检索方法[J].计算机研究与发展,2005,42(11):1903-1910. 被引量:12
  • 2Wu B F, Lin S P, Chiu C C. Extracting characters from real vehicle lieence plates out-of-doors, IET Computer Vision, 2007, 1(1): 2-10. 被引量:1
  • 3Hong B H, Yang C H. An approach to license plate locating in intelligent transportation system. In: Proceedings of the 2nd International Conference on Pervasive Computing and Applications. Birmingham, UK: IEEE, 2007. 319-322. 被引量:1
  • 4Faradji F, Rezaie A H, Ziaratban M. A morphological-based license plate location. In: Proceedings of the 14th IEEE International Conference on Image Processing. Texas, USA: IEEE, 2007. 57-60. 被引量:1
  • 5Huang Y R, Duan H. Edge detection of license plate based on wavelet transform and quantum genetic algorithm. In: Proceedings of the SPIE on the International Society for Optical Engineering. Wuhan, China: SPIE, 2007. 6786-6789. 被引量:1
  • 6Novak C L, Sharer S A. Anatomy of a color histogram. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Champaign, USA: IEEE, 1992. 599-605. 被引量:1
  • 7Li G, Liu C, He M Q, Huang X Y. A location method for vehicle license plate based on color image and black- white texture. In: Proceedings of the SPIE on Mechatron- ica, MEMS, and Smart Materials. Gifu, Japan: SHE, 2008. 67944-67949. 被引量:1
  • 8Park S H, Kim K I, Jung K, Kim H J. Locating car license plates using neural networks. Electronics Letters, 1999, 35(17): 1475-1477. 被引量:1
  • 9Chua L O, Yang L. Cellular nellral networks: theory and applications. IEEE Transactions on Circuits and Systems, 1988, 35(10): 1257-1272. 被引量:1
  • 10Chua L O. Cellular neural networks: a vision of complexity. International Journal Bifurcation and Chaos, 1997, 7(10): 2219-2425. 被引量:1

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部