期刊文献+

具有中心群代数同构的两个有限群

On Finite Groups with Isomorphic Centers of Group Rings
下载PDF
导出
摘要 设G和H是两个有限群,R是复数域C中所有代数整数构成的环。用RG表示G在R上的群代数,Z(RG)是RG的中心。在这篇注记中,设Z(RG)≌Z(RH),如果G是内幂零群,那么群H不一定是内幂零群。进一步,群H的结构也可以得到。 Let G and H be two finite groups, R is the ring of all the algebraic integers in the field C of complex numbers. Denote the group algebra of G over R by RG and the central of RG by Z(RG). In this note, the following question is discussed: Suppose that Z(RG)≌Z(RH), then H is not necessarily an inner nilpotent group if G is an inner nilpotent group. Furthermore, the structure of the finite group H can be obtained.
作者 王琰 海进科
出处 《青岛大学学报(自然科学版)》 CAS 2011年第1期21-24,共4页 Journal of Qingdao University(Natural Science Edition)
基金 山东省自然基金资助项目(Y2008A03)
关键词 中心群代数 群代数 中心本原幂等元 central group algebra group algebra central primitive idempotent
  • 相关文献

参考文献7

  • 1Navarro G. , Two groups with isomorphic group algebras [J]. Arch. Math. 1990, 55.. 35-37. 被引量:1
  • 2Nagao H. , Tsushima Y. , Representations of Finite Groups [M]. New York: Academic press, 1992. 被引量:1
  • 3Isaacs I. M. , Recovering information about a group from its complex group algebra [J]. Arch. Math. 1986, 47: 293-295. 被引量:1
  • 4Isaacs I. M. , Character Theory of Finite Groups [M]. New York:Acdemic press, 1976. 被引量:1
  • 5M. Hertweck, On isomorphisms between centers of integral group rings of finite groups [J]. Proe. Amer. Math. Soe. 136,1539-1547(2008). 被引量:1
  • 6Sehgal S. K. , On the Isomorphism of group algebras [J]. Math. Z. 1967, 95:71-75. 被引量:1
  • 7Berkovich Ya. G. , Zhmud" E. M. , Characters of finite groups [M]. Part I, Translations of Mathematical Monographs, 1997, 172. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部