期刊文献+

关于汽车追尾冲击模型的维修策略

The Maintenance Policy for the Shock Model on the Rear-end
下载PDF
导出
摘要 讨论了关于汽车追尾的冲击模型的可修系统.在系统不能修复如新的条件下,假定汽车运行时间构成随机递减的几何过程,逐次追尾后的维修时间构成随机递增的几何过程.分别考虑汽车按比例保修和免费保修条件下,以汽车追尾次数N为策略,以车主在汽车长期运行单位时间内的期望费用为目标函数,导出目标函数的解析表达式P1(N)与P2(N).最后,通过实例分析,求出最优策略N*,使得车主在汽车长期运行单位时间内的期望费用最小. A repairable system with the shock model on the rear-end was studied. Under the condition that the system can not be repaired as good as new, we assume that the vehicle running time constitutes a decreasing stochastically geometric process, and the repair time after successive rear-end constitutes an increasing stochastically geometric process. The pro rata warranty,the free warranty strategy and the replace policy based on the failure number N were studied, and the explicit expressions P1 (N) and P2 (N) of the vehicle owners' expected cost per unit time owing to the vehicle running in the long term was derived. Finally, the optimal strategy N* was obtained by the numerical example,which makes the vehicle owners' expected cost per unit time minimal in the long term of vehicle running.
出处 《经济数学》 北大核心 2011年第1期45-48,共4页 Journal of Quantitative Economics
基金 河北省教育厅计划项目(2007323) 河北省自然科学基金项目(A200500301)
关键词 按比例保修 免费保修 汽车追尾 冲击模型 几何过程 维修策略 the pro-rata warranty the free warranty the rear-end shock model geometric process the maintenance policy
  • 相关文献

参考文献2

二级参考文献14

  • 1南京工学院数学教研组.积分变换 (第3版)[M].高等教育出版社,1989.. 被引量:1
  • 2Shanthilumar J G, Sumita U. General shock models associated with correlated renewal seauences. J of Appl Prob, 1983(20), 600-614. 被引量:1
  • 3Lam Y. Geometric processes and replacement problem. Acta Math Appl Sin, 1988(4), 366-377. 被引量:1
  • 4Zhang Y L. A bivaxiate optimal replacement policy for a repairable system. Journal Applied Probability, 1994(31), 1123-1127. 被引量:1
  • 5Zhang Y L. An optimal geometric process model for a cold standby repairable system. Reliability Engineering and Systems Safety, 1999 63,107-110. 被引量:1
  • 6Barlow R E, Proschan F. Statistical Theory of Reliability and Life Testing. Hot, Rinehart and Winston, Inc, New York, 1975. 被引量:1
  • 7Ross S M. Stochastic processes. Wiley, New York, 1982. 被引量:1
  • 8Esary J D. A Stochastic Theory of Accident Survival and Fatality. PHD Dissertation, University of California, Berkely, 1957. 被引量:1
  • 9Esary J D, Marshall A W, Proschan F. Shock models and wear processes. Ann Prob,1973(1),627-650. 被引量:1
  • 10Ross S M. Generalized Poisson shock models. Ann Prob, 1981(9),896-898. 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部