摘要
Particle size distribution(PSD) is an important parameter in the process of fluidization,and it always plays a crucial role in a gas-solid fluidized system.A PSD model for on-line PSD determination based on acoustic emission(AE) measurement was developed according to the mechanism of particle collision with the inner wall of the cylinder and multi-scale wavelet decomposition analysis.This PSD model illuminates the quantitative relationship between the energy percentage of AE signals for different scales and the PSD,which indicates the feasibility of the application of the PSD model.Experiments were undertaken both in lab and plant gas-solid fluidized setup with polyethylene particles,and the parameters of the PSD model were calibrated and revised.The experimental conditions and results proved that the PSD model was suitable for on-line measurement and was sufficiently sensible and accurate.Concerning agglomeration,the PSD model also showed exact serviceability on detecting the onset of agglomeration by abnormal PSD,and the result agreed with that from the radiation method.Ultimately,AE measurement was found to be a reliable and credible means for understanding the PSD information that affects the behavior of a system,which can provide valuable guidance for practical applications.
Particle size distribution (PSD) is an important parameter in the process offluidization, and it always plays a crucial role in a gas-solid fluidized system. A PSD model for on-line PSD determination based on acoustic emission (AE) measurement was developed according to the mechanism of particle collision with the inner wall of the cylinder and multi-scale wavelet decomposition analysis. This PSD model illuminates the quantitative relationship between the energy percentage of AE signals for different scales and the PSD, which indicates the feasibility of the application of the PSD model. Experiments were undertaken both in lab and plant gas-solid fluidized setup with polyethylene particles, and the parameters of the PSD model were calibrated and revised. The experimental conditions and results proved that the PSD model was suitable for on-line measurement and was sufficiently sensible and accurate. Concerning agglomeration, the PSD model also showed exact serviceability on detecting the onset of agglomeration by abnormal PSD, and the result agreed with that from the radiation method. Ultimately, AE measurement was found to be a reliable and credible means for understanding the PSD information that affects the behavior of a system, which can provide valuable guidance for practical applications.
基金
Project supported by the National Natural Science Foundation of China(Nos.21076180and20736011)
the National High-Tech R&D Program(863)of China(No.2007AA04Z182)