期刊文献+

基于似然函数最速下降的红外与可见光图像配准 被引量:4

IR/Visible Image Registration Based on the Steepest Descent of the Likelihood Function
下载PDF
导出
摘要 为了实现红外与可见光图像的自动配准,提出了基于似然函数最速下降迭代的图像配准算法.该算法以图像边缘作为配准点特征,将异源图像配准转化为边缘点集配准.基于点集的高斯混合模型建立了边缘点集配准似然函数,以该函数作为目标函数,仿射变换参量作为优化变量,利用最速下降方法进行最优变换参量求解,从而实现边缘点集配准.同时,将多分辨率金字塔引入迭代配准框架下,实现了高分辨率图像配准的加速.实验结果表明:该算法精度高,运算速度快,可以很好地完成可见光与红外图像的自动配准. In order to realize automatic image registration for infrared image and visible image,an image registration algorithm based on the steepest descent of the likelihood function was proposed.Image edge was selected as the registration point,and thus the image registration was transferred to edge point set registration.The likelihood function of edge sets registration was established on the basis of Gauss Mixture Model(GMM) of point sets.In order to resolve the optimum transformation parameter by using the steepest descent method,the likelihood function was regarded as objective function and the affine transformation parameter was regarded as the optimization variance.Meanwhile,the multi-resolution pyramid was induced into iteration registration and the speed of registration algorithm for high resolution image was increased.The experiment results show that the algorithm can well complete automatic registration of infrared image and visual image at high registration accuracy and fast registration speed.
出处 《光子学报》 EI CAS CSCD 北大核心 2011年第3期433-437,共5页 Acta Photonica Sinica
基金 国家自然科学基金(No.61007008) 基础科研项目(No.k1402060311)资助
关键词 信息处理技术 图像配准 仿射变换 最速下降 Information processing technology Image registration Affine transform Steepest descent
  • 相关文献

参考文献10

  • 1KIM Y S, LEE J H, RA J B. Multi sensor image registration based on intensity and edge orientation information[J]. Pattern Recognition, 2008,41 ( 11 ) : 3356-3365. 被引量:1
  • 2王阿妮,马彩文,刘爽,柳丛,赵欣.基于角点的红外与可见光图像自动配准方法[J].光子学报,2009,38(12):3328-3332. 被引量:12
  • 3MIKOI.AJCZYK K,SCHMID C. A Performance evaluation of Local descriptors[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence ,2005,27(10) : 1615-1630. 被引量:1
  • 4BAY H,Ess A,Tuytelaars T,etal. Speeded up robust features (surf) [J]. Computer Vision and Image Understanding, 2008, 110(3) :346-359. 被引量:1
  • 5高峰,文贡坚,吕金建.基于干线对的红外与可见光最优图像配准算法[J].计算机学报,2007,30(6):1014-1021. 被引量:26
  • 6COIRAS E, SANTAMARIA J, MIRAVET C. Segment-based registration technique for visual-infrared images [J]. Optical Engineering, 2000,39( 1 ) : 282-289. 被引量:1
  • 7李世飞,王平,沈振康.迭代最近点算法研究进展[J].信号处理,2009,25(10):1582-1588. 被引量:26
  • 8LUO B, HANCOCK E R. A unified framework for alignment and correspondence [J]. Computer Vision and Image Understanding", 2003,92( 1 ) : 26-55. 被引量:1
  • 9ANDRIY M, XUBO S. Point set registration: coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12) : 2262-2275. 被引量:1
  • 10ZITOVA B, FLUSSER J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21 (11) 977-1000. 被引量:1

二级参考文献63

  • 1张鸿宾,谢丰.基于表面间距离度量的多视点距离图像的对准算法[J].中国科学(E辑),2005,35(2):150-160. 被引量:12
  • 2焦玉龙,罗秀娟,马健康.一种凹凸边界上特征点的提取方法[J].光子学报,2006,35(2):312-315. 被引量:10
  • 3杨必武,郭晓松,赵敬民,王玉森.基于小波变换的视差图像全局几何配准新算法[J].光子学报,2007,36(3):574-576. 被引量:9
  • 4Dorai C, Wang G, Jain A K, et al. Registration and integration of multiple object views for 3D model construction [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 1998,20( 1 ) : 83-89. 被引量:1
  • 5Shunichi K, Tomonori K, Atsushi M. Robust matching of 3D contours using iterative closest point algorithm improved by M-estimation [ J ]. Pattern Recognition. 2003 : 2041 - 2047. 被引量:1
  • 6Horn B K. Closed-form solution of absolute orientation using unit quaternions [ J ]. Journal of Optical Society of America. 1987,4(4) : 629. 被引量:1
  • 7Horn B K, Hilden H M, Negahdaripour S. Closed-form solution of absolute orientation using orthonormal matrices [ J ]. Journal of the Optical Society of America. 1988,5 (7) : 1127. 被引量:1
  • 8Eggert D W, Lorusso A, Fisher R B. Estimating 3-D rigid body transformations: a comparison of four major algorithms [ J ]. 1997,9 (5) : 272-290. 被引量:1
  • 9Chetverikov D, Stepanov D, Krsek P. Robust euclidean alignment of 3d point sets: the trimmed iterative closest point algorithm [ J ]. Image Vision Comput. 2005,23 ( 3 ) : 299 - 309. 被引量:1
  • 10Synave R, Desbarats P, Gueorguieva S. Automated Trimmed Iterative Closest Point Algorithm [ J ]. Advances in Visual Computing. 2007 : 489-498. 被引量:1

共引文献59

同被引文献59

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部