摘要
With the development of Intemet and Web service technology, Web service composition has been an effective way to construct software applications; service selection is the crucial element in the composition process. However, the existing selection methods mostly generate static plans since they neglect the inherent stochastic and dynamic nature of Web services. As a result, Web service composition often inevitably terminates with failure. An indeterminacy-aware service selection algorithm based on an improved Markov decision process (IMDP) has been designed for reliable service composition, but it suffers from higher computation complexity. Therefore, an efficient method is proposed, which can reduce the computation cost by converting the service selection problem based on IMDP into solving a nonhomogeneous linear equation set. Experimental results demonstrate the success rate of service composition has been improved greatly, whilst also reducing computation cost.
With the development of Intemet and Web service technology, Web service composition has been an effective way to construct software applications; service selection is the crucial element in the composition process. However, the existing selection methods mostly generate static plans since they neglect the inherent stochastic and dynamic nature of Web services. As a result, Web service composition often inevitably terminates with failure. An indeterminacy-aware service selection algorithm based on an improved Markov decision process (IMDP) has been designed for reliable service composition, but it suffers from higher computation complexity. Therefore, an efficient method is proposed, which can reduce the computation cost by converting the service selection problem based on IMDP into solving a nonhomogeneous linear equation set. Experimental results demonstrate the success rate of service composition has been improved greatly, whilst also reducing computation cost.