期刊文献+

没有K_5-子式的图是无圈5-可染的

K_5-minor-free graphs are acyclically 5-colorable
下载PDF
导出
摘要 2006年,Borodin证明了所有平面图都可以无圈5-可染。本文推广Borodin的结果到没有K5-子式的图。 In 2006,Borodin showed that all planar graphs were acyclically 5-colorable. In this paper the result is generalized to all Ks-minor-free graphs.
出处 《河北省科学院学报》 CAS 2010年第4期1-3,共3页 Journal of The Hebei Academy of Sciences
基金 河北省自然科学基金资助项目(A2006000004)
关键词 无圈k-可染 Wagner图 没有K5-子式的图 k-和 Acyclic colorings The wagner graph K5-minor-free graphs k-sum
  • 相关文献

参考文献10

  • 1M. O. Albertson and D. M. Berman,Every planar graph has an acvlic 7-coloring,larael J. Math. 1997,28:169-174. 被引量:1
  • 2J. A. Bondy, U. S. R. Mury, Graph Theory,Grdute Texts Mat hematics. 2008,244, Springer. 被引量:1
  • 3O. V. Borodin, On aeyclic coloring of planar graphs, Discrete Math. 2006,306 : 953-972. 被引量:1
  • 4R. Diestel, Graph Theory, Springer, New York, 2000 (elee- troniceditionⅡ). 被引量:1
  • 5B. Griinbaum, AcycIic coloring of planar granhs, Iarael J. Math. 1973,14:390-408. 被引量:1
  • 6Wenjie He,Wenjing Miao,Yufa Shen,Another proof of the 5-choosability of Ks-minor -free graphs. Discrete Math, 2008,308 : 4024-4026. 被引量:1
  • 7A. V. Kostochka, Acyclic 6-colorings of planar graphs(in Russian), Metody diskret. Analiz. 1976,28:40- 56. 被引量:1
  • 8R. Ekrekovski, Choosability of Ks-minor-free graphs, Dis- crete Math. 1998,190 : 223-226. 被引量:1
  • 9C. Thomassen, Every planar graph is 5-choosable, J. Gombin. Theory Ser. B. 1994,62:180-181. 被引量:1
  • 10K. Wagner, tiber eine Eigenschaft der ebenen Komplexe, Math,Ann. 1937,144:570-590. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部