摘要
对n上的粗糙核分数次积分算子TΩ,αf(x)=∫n|Ωx(-x-y|yn)-αf(y)dy证明了若权函数(u,v)满足一定的Ap条件,则TΩ,α是弱有界的,其中0<α<n,Ω∈Ls(Sn-1)为n上的零次齐次函数.
The two-weight weak-type norm inequalities for fractionalintegral operators with rough kernel was given,which is defined byTΩ,αf(x)=∫MnΩ(x-y)|x-y|n-αf(y)dyIf the weights(u,v) satisfy a certain Ap type condition,then the fractional integral operators with rough kernel TΩ,α is weak boundedness,where 0αn,andlet Ω∈Ls(Sn-1) be homogeneous of degree zero on Mn were proved.
出处
《哈尔滨师范大学自然科学学报》
CAS
2010年第3期5-8,共4页
Natural Science Journal of Harbin Normal University
基金
黑龙江省教育厅科研项目基金资助(11531238)
关键词
分数次积分算子
双权不等式
粗糙核
Fractional integral operators
Two-weight inequality
Rough kernel