期刊文献+

完美图在超图上的推广

An Extension of The Perfect Graph in Hypergraphs
下载PDF
导出
摘要 由完美图知道,如果图G和它的每一个诱导子图均满足其色数x等于其最大团的基数ω,则图G是完美的。在这篇论文中,定义了弱k-完美超图和强k-完美超图。在这个定义之下,完美图是超图的一个特殊情况。进一步,讨论了弱k-完美超图和强k-完美超图的性质,并且得出了一个定理,该定理不能由Lovasz的相应定理直接推广而来。 In the context of the perfect graphs,it is known that a graph G is perfect if G and each of its induced subgraphs have the property that the chromatic number x equals the size of a maximum clique ω.In this paper we define the weak k-perfect hypergraph and the strong k-perfect one,the definition makes the family of the perfect graphs be a special case.Furthermore,we discuss the properties of the k-perfect hypergraph and the strong k-perfect one,and obtain a theorem that can not be got directly from the corresponding theorem of Lovasz's.
作者 孙林
机构地区 昌吉学院数学系
出处 《新疆师范大学学报(自然科学版)》 2011年第1期88-90,共3页 Journal of Xinjiang Normal University(Natural Sciences Edition)
基金 昌吉学院研究生科研启动基金项目(09SSQD027)
关键词 弱k-完美超图 强k-完美超图 k-团 The weak k-perfect hypergraph The strong k-perfect hypergraph The k-clique
  • 相关文献

参考文献5

  • 1C. Berge, V. Chvatal, Select Topics in graph theory. North-holland-Amsterdam, New York, Oxford, 1984. 被引量:1
  • 2C. Berge, Graphs and Hypergraphs (Translated from the Frenchby Edward Minieka). North- Holland Mathematical Library, vol, 6, North- Holland publishing co, Amsterdam, London, American Elsevierpublishing co, Inc, New. York, 19 7 3. 被引量:1
  • 3J.A. Bondy, U. S.R. Murty, Graph theory withapplications. Macmillan, L-ondon, Elsevier, NewoYork, 1976. 被引量:1
  • 4M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perfect graph theorem. Princeton University, 2002. 被引量:1
  • 5L. Lovasz, Graph Theory. Academic Press. London, 1983, 56-85. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部