期刊文献+

Histogram of the Oriented Gradient for Face Recognition 被引量:11

Histogram of the Oriented Gradient for Face Recognition
原文传递
导出
摘要 The histogram of oriented gradient has been successfully applied in many research fields with excellent performance especially in pedestrian detection. However, the method has rarely been applied to face recognition. Aimed to develop a fast and efficient new feature for face recognition, the original HOG and its variations were applied to evaluate the effects of different factors. An information theory-based criterion was also developed to evaluate the potential classification power of different features. Comparative experiments show that even with a relatively simple feature descriptor, the proposed HOG feature achieves almost the same recognition rate with much lower computational time than the widely used Gabor feature on the FRGC and CAS-PEAL databases. The histogram of oriented gradient has been successfully applied in many research fields with excellent performance especially in pedestrian detection. However, the method has rarely been applied to face recognition. Aimed to develop a fast and efficient new feature for face recognition, the original HOG and its variations were applied to evaluate the effects of different factors. An information theory-based criterion was also developed to evaluate the potential classification power of different features. Comparative experiments show that even with a relatively simple feature descriptor, the proposed HOG feature achieves almost the same recognition rate with much lower computational time than the widely used Gabor feature on the FRGC and CAS-PEAL databases.
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2011年第2期216-224,共9页 清华大学学报(自然科学版(英文版)
基金 Supported by the National Key Basic Research and Development(973) Program of China (No. 2007CB311004) the National High-Tech Research and Development (863) Program of China(No. 2006AA01Z115)
关键词 face recognition FEATURE histogram of oriented gradient face recognition feature histogram of oriented gradient
  • 相关文献

参考文献19

  • 1Turk M, Pentland A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. 被引量:1
  • 2Freeman W, Adelson E. The design and use of steerable filters. IEEE Trans. Pattern Analysis and Machine Intelligence, 1991, 13(9): 891-906. 被引量:1
  • 3Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522. 被引量:1
  • 4Zhao W, Chellappa R, Rosenfeld A, et al. Face recognition: A literature survey. ACM Comput. Surv., 2003, 35: 399-458. 被引量:1
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. 1EEE Trans. Pattern Analysis and Machine In- telligence, 1997, 19(7): 7l 1-720. 被引量:1
  • 6Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary pattern. In: Proc. 8th Eur. Conf. Computer Vision. Prague, Czech, 2004:469-481. 被引量:1
  • 7Gabor D. Theory of communication. Journal of Institute for Electrical Engineering, 1946, 93(III): 429-457. 被引量:1
  • 8Lades M, Vorbmggen J C, Buhmann J, et al. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Computers, 1993, 42(3): 300-311. 被引量:1
  • 9Wiskott L, Fellous J M, Kruger N, et al. Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence, 1997, 19(7): 775-779. 被引量:1
  • 10Freeman W T, Roth M. Orientation histograms for hand gesture recognition. In: Intl. Workshop on Automatic Face and Gesture Recognition. IEEE Computer Society, Zurich, Switzerland, 1995: 296-301. 被引量:1

同被引文献72

  • 1胡仕玲,顾爽,陈启军.基于HOG的物体分类方法[J].华中科技大学学报(自然科学版),2011,39(S2):124-126. 被引量:7
  • 2李毅,徐守时.基于支持向量机的遥感图像舰船目标识别方法[J].计算机仿真,2006,23(6):180-183. 被引量:15
  • 3樊晓珂.城市交通拥堵问题研究[J].中国公共安全(学术版),2007(1):48-51. 被引量:27
  • 4Iwasaki Y,Kawata S,Nakamiya T.Robust vehicle detectioneven in poor visibility conditions using infrared thermal imagesand its application to road traffic flow monitoring[J].Measure-ment Science and Technology? 2011,22(8):085501-085510. 被引量:1
  • 5Liu X,Sun Zj He H.On-road vehicle detection fusing radar andvision[C]// IEEE International Conference on VehicularElectronics and Safety,2011:150-154. 被引量:1
  • 6Deng N,Tian Y,ZhangC.Support vector machines:Optimi-zation based theory,algorithms,and extensions[M].BocaRaton,FL:Chapman and Hall/CRC,2012. 被引量:1
  • 7Wu X,Kumar V.The top ten algorithms in data mining[M].Boca Raton,FL:Chapman and Hall/CRC,2009. 被引量:1
  • 8Wang J, Cohen M F. Image and video matting; A survey [ J ]. Founfa- tions and Trends (R) in Computer Graphics and vision,2007,3 ( 2 ) : 97 - 175. 被引量:1
  • 9Wang O, Finger J, Yang Q, et al. Automatic natural video matting with depth [ C ]//Proc of Pacific Graphics. Hawaii, USA : IEEE Press,2007 : 469 - 472. 被引量:1
  • 10Gao S H,Tsang I W,Liang T,et al. Local features are not lonely-Lapla-cian sparse coding for image classification [ C ]//Proc. CVPR. 2009 : 1794 - 1801. 被引量:1

引证文献11

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部