期刊文献+

基于云端计算架构的恶意代码联合防御机制 被引量:4

Joint defense mechanism of malicious code based on cloud and client computing architecture
下载PDF
导出
摘要 为了解决恶意代码防御软件存在的滞后性问题,提出一种可普遍适用于互联网和内联网的基于云端计算架构的恶意代码联合防御机制.首先将传统的云计算拓展成新型云端计算,发挥云端计算环境中的集群服务器端和用户终端各自的优势以及两者的联动作用,有效地利用云端计算环境中的服务器集群集成多种恶意代码防御引擎,同时联合海量用户终端节点来主动提供恶意代码报告,使得整个网络系统能及时、有效地抵御恶意代码的攻击.具体给出了基于云端计算架构的恶意代码联合防御机制的体系架构和工作流程.为了进一步提高系统的工作性能,还提出了一种基于节点信誉的恶意代码报告评价与排序算法,从而使系统能够及时处理最有价值的恶意代码报告.通过仿真实验和性能分析对算法性能和系统的恶意代码防御能力以及服务器端负载与网络开销进行分析.实验与分析结果表明基于云端计算架构的恶意代码联合防御机制可以较小的系统代价高效地防御层出不穷的各类恶意代码. In order to solve a series of deficiencies in current anti-virus software,such as lagging behind the production of malicious codes,a new joint defense mechanism of malicious code based on the cloud client computing architecture is proposed,which is suitable for both the Internet and the Intranet computing environment.Firstly,the traditional cloud computing is expanded into the cloud client computing.The server-side cluster and user-side terminals are both facilitated playing their respective advantages and utilizing the linkage between each other.A variety of malicious code defense engines are integrated in the server-side cluster.The large-scale terminal nodes are responsible for providing reports of malicious code,making the network and every node effectively protected against malicious code attacks in time.The architecture and workflow of the cloud--client-based joint defense mechanism of malicious code is described in detail.In order to improve system performance further,the evaluation and sorting algorithm of malicious code report is also presented,with which the most valuable reports can be processed by the system in time.Simulation experiments and system performance analysis were implemented to test the efficiency of algorithm,the malicious code defending ability of the system,the load of servers and the traffic of networks.The results show that the mechanism can effectively resist endless malicious codes of all kinds with low costs.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第2期220-226,共7页 Journal of Southeast University:Natural Science Edition
基金 江苏省科技支撑计划资助项目(BE2009158) 江苏省普通高校自然科学研究资助项目(09KJB520010 08KJB620002) 高等学校博士学科点专项科研基金资助项目(20093223120001) 教育部科技发展中心网络时代的科技论文快速共享专项研究资助项目(2009117) 国家重点基础研究发展计划(973计划)资助项目(2011CB302903)
关键词 云计算 恶意代码 反病毒 联合防御 cloud computing malicious code anti-virus joint defense
  • 相关文献

参考文献10

  • 1Xiaolong Xu,Ruchuan Wang,Fu Xiao.Malicious code passive propagation model and vaccine distribution model of P2P networks[J].Journal of Systems Engineering and Electronics,2010,21(1):161-167. 被引量:9
  • 2Pistolpete. 杀毒软件[EB/OL]. (2010-06-06) [2010- 08-12 ]. http ://baike. baidu, com/view/33433, htm. 被引量:1
  • 3Shevchenko A. The evolution of technologies used to detect malicious code [EB/OL]. ( 2007-11-07 ) [2010- 05-07]. http ://www. kaspersky, com. 被引量:1
  • 4Kolter J, Maloof M. Learning to detect and classify malicious executables in the wild [J]. Journal of Machine Learning Research, 2006, 7 (12) : 2721 - 2744. 被引量:1
  • 5张小康.基于数据挖掘和机器学习的恶意代码检测技术研究[D].合肥:中国科学技术大学自动化学院,2009. 被引量:1
  • 6周瑞丽.基于专家系统的恶意代码检测[D].合肥:中国科学技术大学信息科学技术学院,2009. 被引量:1
  • 7陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1311
  • 8安安百科.云安全[EB/OL].(2009-12-20)[2010-07-28].http:/www.hudong.corw/wiki/云安全. 被引量:1
  • 9Kondakci S. Epidemic state analysis of computers under malware attacks [ J ]. Simulation Modelling Practice and Theory, 2008,16( 5 ) :571 - 584. 被引量:1
  • 10Rohloff K, Baqar T. Deterministic and stochastic models for the detection of random constant scanning worms[ J]. ACM Transactions on Modeling and Computer Simulation: Association for Computing Machin- ery, 2008, 18(2): 1-24. 被引量:1

二级参考文献30

  • 1乐光学,李仁发,周祖德.基于Region多层结构P2P计算网络模型[J].软件学报,2005,16(6):1140-1150. 被引量:22
  • 2Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss 被引量:1
  • 3Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf 被引量:1
  • 4Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403. 被引量:1
  • 5Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11. 被引量:1
  • 6Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28. 被引量:1
  • 7Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117. 被引量:1
  • 8Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43. 被引量:1
  • 9Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150. 被引量:1
  • 10Burrows M. The chubby lock service for loosely-coupled distributed systems. In: Proc. of the 7th USENIX Symp. on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006. 335-350. 被引量:1

共引文献1315

同被引文献55

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部