期刊文献+

A 9×9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System 被引量:2

A 9×9 Matrix Representation of Birman-Wenzl-Murakami Algebra and Berry Phase in Yang-Baxter System
下载PDF
导出
摘要 We present a 9×9 S-matrix and E-matrix.A representation of specialized Birman-Wenzl-Murakami algebra is obtained.Starting from the given braid group representation S-matrix,we obtain the trigonometric solution of Yang-Baxter equation.A unitary matrix R(x,φ1,φ2)is generated via the Yang-Baxterization approach.Then we construct a Yang-Baxter Hamiltonian through the unitary matrix R(x,φ1,φ2).Berry phase of this Yang-Baxter system is investigated in detail.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第2期263-267,共5页 理论物理通讯(英文版)
基金 Supported by National Natural Science Foundation of China under Grants No.10875026
关键词 Birman-Wenzl-Murakami algebra Yang Baxter equation Berry phase 矩阵表示 Berry相 系统 上代数 代数表达式 辫子群表示 矩阵和 酉矩阵
  • 相关文献

参考文献26

  • 1C.N. Yang, Phys. Rev. Lett. 19 (1967) 1312; C.N. Yang, Phys. Rev. 168 (1968) 1920. 被引量:1
  • 2R.J. Baxter, Exactly Solved Models in Statistical Mechan- ics, Academic Press, New York (1982); R.J. Baxter, Ann. Phys. 70 (1972) 193. 被引量:1
  • 3L.H. Kauffman, Knots and Physics, World Scientific Publ. Co. Ltd., Singapore (1991). 被引量:1
  • 4C.N. Yang, M.L. Ge, et al, Braid Group, Knot Theory and Statistical Mechanics (I and II), World Scientific Publ. Co. Ltd., Singapore (1989) and (1994). 被引量:1
  • 5A.Y. Kitaev, Ann. Phys. 303 (2003) 2. 被引量:1
  • 6L.H. Kauffman and S.J. Lomonaco Jr., New J. Phys. 6 (2004) 134. 被引量:1
  • 7J. M. Franko, E.C. Rowell, and Z. Wang, J. Knot Theory Ramif. 15 (2006) 413. 被引量:1
  • 8Y. Zhang, L.H. Kauffman, and M.L. Ge, Int. J. Quant. Inf. 3 (2005) 669. 被引量:1
  • 9Y. Zhang and M.L. Ge, Quant. Inf. Proc. 3 (2007) 363; Y. Zhang, E.C. Rowell, Y.S. Wu, Z.H. Wang, and M L Ge, e-print, arxiv:quant-ph/0706.1761 (2007). 被引量:1
  • 10J.L. Chen, K. Xue, and M.L. Ge, Phys. Rev. A 76 (2007) 042324. 被引量:1

同被引文献7

  • 1Thomas Curtright,David Fairlie,Xiang Jin,Luca Mezincescu,Cosmas Zachos.Classical and quantal ternary algebras[J].Physics Letters B.2009(3) 被引量:1
  • 2Shankhadeep Chakrabortty,Alok Kumar,Sachin Jain.w <SUB>∞</SUB> 3-algebra[J].Journal of High Energy Physics.2008(09) 被引量:1
  • 3Thomas L. Curtright,David B. Fairlie,Cosmas K. Zachos.Ternary Virasoro–Witt algebra[J].Physics Letters B.2008(4) 被引量:1
  • 4Michio Jimbo.QuantumR matrix for the generalized Toda system[J].Communications in Mathematical Physics.1986(4) 被引量:1
  • 5Tatiana Gateva-Ivanova,Peter Cameron.Multipermutation Solutions of the Yang–Baxter Equation[J].Communications in Mathematical Physics.2012(3) 被引量:1
  • 6Andrew B. Ferrari.On the blow-up of solutions of the 3-D Euler equations in a bounded domain[J].Communications in Mathematical Physics.1993(2) 被引量:1
  • 7任新安,王世坤,吴可.SOLVING COLORED YANG-BAXTER EQUATION BY WU’S METHOD[J].Acta Mathematica Scientia,2009,29(5):1267-1294. 被引量:3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部