期刊文献+

基于网络评论语言学结构的情感倾向识别模型 被引量:3

Sentiment Polarity Recognition Model Based on Linguistic Structure of Network Reviews
下载PDF
导出
摘要 展示了一种新的基于网络评论语言学结构的情感倾向识别模型,固定情感词元模型(fixed sentiment terms model).该方法利用基于固定情感词元的3种特定搭配模式来构造识别算法,通过基于增量的tf-idf模型的相关用户反馈不断更新特征词元集合.通过与传统的情感识别方法相比较,此方法可以较为明显地提高情感分类的效率和准确率. A new sentimental polarity recognition model based on linguistic structure of emotion states-fixed sentiment terms model was presented.The proposed method used three types of specific collocation pattern to construct the recognition algorithm based on fixed sentiment terms.These feature term sets were gradually updated by relevant feedbacks from the users which based on incremental tf-idf model.Comparison was between the traditional method and fixed sentimental terms model.All tests showed the proposed method got a higher efficiency and accuracy rate of the emotion classifier.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2011年第1期80-84,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 河南省重点科技攻关项目 编号082102210054 郑州市科技攻关项目 编号0910SGYG23259-3
关键词 语言学结构 固定情感词元 增量的tf-idf模型 情感特征选择 情感分类器 linguistic structure fixed sentimental terms incremental tf-idf model sentimental feature extraction sentimental classifier
  • 相关文献

参考文献11

  • 1Turney P D. Thumbs' up or thumbs down? Semantic orientation applied to unsupervised classification of reviews[C]// Proc of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia,2002: 417-424. 被引量:1
  • 2Hu M Q, Liu B. Mining and summarizing customer reviews[C]//Proc of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,2004: 168-177. 被引量:1
  • 3Nan L,Desheng D W. Using text mining and sentiment analysis for online forums hotspot detection and forecast[J]. Decision Support Systems,2010,48(2):354-368. 被引量:1
  • 4Zhang Qirui, Zhang Ling,Dong Shoubin, et al. Document indexing in text categorization[C]//Proc of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou,2005:3792-3796. 被引量:1
  • 5Yang Yiming,Pederson J O. A comparative study on feature selection in text categorization[C]//Proc of the 14th International Conference on Machine Learning. San Francisco, 1997:412-420. 被引量:1
  • 6周茜,赵明生,扈旻.中文文本分类中的特征选择研究[J].中文信息学报,2004,18(3):17-23. 被引量:165
  • 7Yang Y,Liu X. A reexamination of text categorization methods[C]//Proc of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, 1999:17-23. 被引量:1
  • 8Yang Y, Pierce T, Carbonell J. A study on retrospective and on line event detection[C]//Proc of the SIGIR' 98. Melbourne, 1998 : 28-36. 被引量:1
  • 9Callan J P,Croft W B, Handing S M. The inquery retrieval system[C]//Proc of the DEXA' 92. Valencia, 1992:78-83. 被引量:1
  • 10王素格,魏英.停用词表对中文文本情感分类的影响[J].情报学报,2008,27(2):175-179. 被引量:22

二级参考文献17

  • 1顾益军,樊孝忠,王建华,汪涛,黄维金.中文停用词表的自动选取[J].北京理工大学学报,2005,25(4):337-340. 被引量:35
  • 2Yang Yiming,Pederson J O.A Comparative Study on Feature Selection in Text Categorization [A].Proceedings of the 14th International Conference on Machine learning[C].Nashville:Morgan Kaufmann,1997:412-420. 被引量:2
  • 3Y.Yang.Noise reduction in a statistical approach to text categorization[A].Proceedings of the 18th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR95)[C].Seattle:ACM Press,1995:256-263. 被引量:2
  • 4Thorsten Joachims,Text Categorization with Support Vector Machines:Learning with Many Relevant Features[A],In:European Conferrence on Machine Learning (ECML)[C].Berlin:Springer,1998,137-142. 被引量:2
  • 5Mlademnic,D.,Grobelnik,M.Feature Selection for unbalanced class distribution and Nave Bayees[A].Proceedings of the Sixteenth International Conference on Machine Learning[C].Bled:Morgan Kaufmann,1999:258-267. 被引量:2
  • 6梁久祯 兰东俊 扈旻.基于先验知识的网页特征压缩与线性分类器设计[A]..第十二届全国神经计算学术大会论文集[C].北京:人民邮电出版社,2002.494-501. 被引量:2
  • 7王治敏 朱学锋 俞士汶.基于现代汉语语法信息词典的词语情感评价研究.Computational Linguistics and Chinese Language Processing,2005,10(4):581-592. 被引量:8
  • 8Hart G W. To decode short cryptograms[ A]. Communications of the ACM [ C ]. New York Association for Computing Machinery, 1994 : 102-108. 被引量:1
  • 9Yang Y, Pedersen J O. Acomparative study on feature selection in text categorization//Proceedings of ICML-97,14^th Internationa Conference on Machine Learning [ C ]. San Francisco Morgan Kaufmann Publishers Inc, 1997:412-420. 被引量:1
  • 10Silva C, RibeiroB. The importance of stop word removal on recall values in text categorization [ J]. Neural Networks, 2003,3 : 20-24. 被引量:1

共引文献184

同被引文献54

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部