期刊文献+

二阶时域波动方程的无网格方法求解 被引量:4

Solving of second-order time domain wave equations by meshless method
原文传递
导出
摘要 将径向基函数配点型无网格方法引入二阶时域波动方程的求解中,方程的空间导数采用径向基函数逼近,时间导数采用Crank-Nicolson方法离散,对应的边界条件直接施加在离散的边界数据点上.采用该方法对二维非规则求解域内的波传播问题进行了数值计算,并与有限元计算结果进行了对比分析.结果表明:基于径向基函数配点的无网格方法不但形式简单、易于实施,而且能够有效解决复杂求解域高维的波动问题. Meshless method was introduced to solve second-order time domain wave equations numerically. The spatial derivatives were approximated by RBF (radial basis function) collocation method, whereas the temporal derivatives were discretized by the Crank-Nicolson method. Corresponding boundary conditions were enforced exactly at a discrete set of boundary nodes. The performances of the present method were demonstrated through their application to a 2D wave propagation problem over irregular domain. Comparing the results with which obtained from the finite element method, show that the radial basis functions collocation method, with the advantages of easy implementation, independence of the shape of the domain and irrespective of the dimension of the problem, is an efficient method for wave problems and which can easily be extended to high dimensional problems.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期26-29,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 高等学校博士学科点专项科研基金资助项目(20070487403) 中央高校基本科研业务费资助项目(2010MS080)
关键词 无网格方法 径向基函数 二阶时域波动方程 配点 复合二次函数 meshless method; radial basis function; second-order time domain wave equation; collocation; multiquadric function;
  • 相关文献

参考文献12

  • 1Davis J L. Mathematics of wave propagation[M]. Princeton: Princeton University Press, 2000. 被引量:1
  • 2Pirozzoli S. Performance analysis and optimization of finite-difference schemes for wave propagation prob- lems[J]. J Comput Phys, 2001, 222: 809-831. 被引量:1
  • 3Bales L, Lasiecka I. Continuous finite elements in space and time for the nonhomogeneous wave equa- tion[J]. Comput Math Appl, 1994, 27: 91-102. 被引量:1
  • 4Rong Z J, Xu C J. Numerical approximation of acous- tic waves by spectral element methods [J]. Appl Numer Math, 2008, 58: 999-1016. 被引量:1
  • 5Chen J T. Recent development of dual BEM in acous- tic problems[J]. Comput Methods Appl Mech En- grg, 2000, 188: 833-845. 被引量:1
  • 6Belytschko T, Krongauz Y, Organ D, et al. Mesh-less methods: an overview and recent developments [J]. Comput Methods Appl Mech Engrg, 1996, 139:3-47. 被引量:1
  • 7Fairweather G, Karageorghis A. The method of fun- damental solution for elliptic boundary problems[J]. Adv Comput Math, 1998(9) : 69-95. 被引量:1
  • 8Chen W, Hon Y C. Numerical investigation on con- vergence of boundary knot method in the analysis ofHelmhohz, modified Helmholtz and convection-diffu- sion problems[J]. Comput Methods Appl Mech En- grg, 2003, 192: 1859-1875. 被引量:1
  • 9李鹏,彭伟才,李志江,何锃.加权最小二乘无网格法求解亥姆霍兹方程[J].华中科技大学学报(自然科学版),2010,38(7):40-43. 被引量:7
  • 10Dehghan M, Shokri A. A meshless method for nu- merical solution of the one-dimensional wave equa-tion with an integral condition using radial basis functions[J]. Numer Algor, 2009, 52: 461-477. 被引量:1

二级参考文献15

  • 1张勇,邵可然,陈德智.工程瞬态涡流问题的边界无单元方法求解[J].华中科技大学学报(自然科学版),2005,33(7):1-3. 被引量:6
  • 2苗雨,王元汉.三维弹性问题无网格分析的奇异杂交边界点方法[J].应用数学和力学,2006,27(5):597-604. 被引量:17
  • 3Belytschko T. Lu Y Y. Gu L. Element free Galerkin methods[J]. Int J Numer Meth Engrg. 1991. 37: 229-256. 被引量:1
  • 4Bclytschko T, Krongauz Y. Organ D, et al. Meshless methods: an ovorview and recent developments [J]. Comput Methods Appl Meeh Engrg, 1996, 139:3-17. 被引量:1
  • 5Bouillard P, Sulcau S. Accurate acoustic compulations using a meshless method[J]. Comp Assist Mech and Eng Se. 2001. 8:415-468. 被引量:1
  • 6Bouillard P, Suleau S. Element-free Galerkin solutions for Helmholtz problems: formulation and numerical assessment of the pollution effect[J]. Comput Methods Appl Mech Eng, 1998, 169:317-335. 被引量:1
  • 7de Bel E, Bouillard P. A coupled partition of unityelement free Gaderkin method for 2D vibro-acoustics [C]//Proc of the Fifth World Congress on Computational Mechanics (WCCM-V). Vienna: Vienna University of Technology, 2002: 508-513. 被引量:1
  • 8Lacroix V. Bouillard P. 3D acoustical analysis using an iterative multilevel meshless method[C]//Proc of the Fifth World Congress on Computational Mechanics (WCCM-V). Vienna: Vienna University of Technology. 2002:885-889. 被引量:1
  • 9Pan X F, Zhang X, Lu M W. Meshless Galerkin least-squares method[J]. Comput Mech, 2005, 35: 182-189. 被引量:1
  • 10Liu Y, Zhang X. Lu M W. Meshless least-squares method for solving the steady state heat conduction equation[J]. Tsinghua Science and Technology, 2005, 10(1): 61 66. 被引量:1

共引文献6

同被引文献55

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部