期刊文献+

一种新型无阀微泵的研究 被引量:1

Research of a Novel Valveless Micropump
下载PDF
导出
摘要 研究了一种适用于微流体系统的新型无阀微泵.以单晶硅片为材料并采用微机电系统(MEMS)技术制备微泵的泵腔以及扩散口和喷口,选用弹性模量较小的聚二甲基硅氧烷(PDMS)作为泵膜,利用扁平振动马达作为驱动部件,研制出一个尺寸为12mm×12mm×6mm的无阀微泵.分别对微泵的振动频率和输出流量进行了测试,结果显示:驱动电压对微泵的频率和流量均有显著影响;当驱动电压在14~3.0V范围的时候,频率和电压成线性关系;流量随着背压的增加而减小,在零背压下,当电压为1.5V时,微泵的流量达到最大值158laL/min. A novel valveless micropump suitable for microfluidic system was researched. The MEMS technology was adopted to fabricate the cavity, diffuser and nozzle of the micropump by using the material of mono- crystalline silicon slice. The flexible polydimethylsiloxane(PDMS) with small elastic modulus was used as the vibration membrane, and the flat vibration motor was used as the actuator. The size of the micropump is 12 mm × 12 mm × 6 mm. The vibration frequency and the flow rate of the micropump are measured, and the results show that the voltage has significant influence on them. When the driving voltage is within the range of 1.4-3.0 V, the frequency and the voltage is linear relation. The flow rate decreases with the increase of back pressure. When a voltage of 1.5 V is applied under the condition of zero back pressure, the maximum flow rate reaches to 158μL/min.
作者 苏波 王登伟
出处 《测试技术学报》 2011年第2期107-111,共5页 Journal of Test and Measurement Technology
基金 首都师范大学实验室开放基金资助(S090108)
关键词 无阀微泵 微电子机械系统 单晶硅 聚二甲基硅氧烷 扁平振动马达 valveless micropump microelectro mechanical systems ( MEMS ) monocrystalline silicon PDMS flat vibration motor
  • 相关文献

参考文献13

  • 1Imser D J, Santiago J G. A review of micropumps[J]. Journal of Mieromechanics and Microengineering, 2005, 14: 35-64. 被引量:1
  • 2Amirpuche F, Zhou Y, Johnson T. Current micropump technologies and their biomedical applications[ J ]. Micrc,syst Techn ol, 2009, 15: 647-666. 被引量:1
  • 3Van T D, Thien X D, Tanaka K, et al. A cross-junction channel valveless-micropimp with PZT actuation[J ]. Microsyst Technol, 2009, 15: 1039-1044. 被引量:1
  • 4Van Lintel H T G,Bouwstra S. A piezxoelectric micropump based on micromachining of silicon[J]. Sensors and Aetuators, 1988 A, 15:153-167. 被引量:1
  • 5Torsten G. Microdiffusers as dynamic passive valves for micropump applications[J]. Sensors and Actualors, 1998, A 69 (2):181-191. 被引量:1
  • 6St err:me E. A valveless diffuser/nuzzle based fluid pump[ J ]. Senmrs and Actuators, 1993, A 39 (2) : 159-167. 被引量:1
  • 7陈本永,陈军,杨涛,姜伟光,郭亮.同步跟随式电磁悬浮驱动器的力学分析与测试[J].测试技术学报,2009,23(2):95-101. 被引量:4
  • 8张宇峰,张国威,刘晓为,陈伟平,王喜莲,王蔚,倪鹤南.平面无阀微泵的设计与制作[J].哈尔滨工业大学学报,2007,39(6):936-939. 被引量:2
  • 9Zhang W, Ahn C H. A bi-directional magnetic micropump on a silicon wafer[C]. IEEE Solid-State Sensor and Actuator Workshop Technical Digest, South Carolina, USA, 1996 : 94-97. 被引量:1
  • 10高晓光,杜立群,吕岩.PZT压电薄膜无阀微泵[J].功能材料与器件学报,2008,14(4):793-798. 被引量:6

二级参考文献41

共引文献11

同被引文献15

  • 1Tzallas A T, Katertsidis N S, Karvounis E C, et al. Modeling and simulation of speed selection on left ven- tricular assist devices[J]. Computers in Biology and Medicine, 2014, 51: 128-139. 被引量:1
  • 2Babamir S M, Dehkordi M B. Specification and simu- lation of behavior of the continuous infusion insulin pump system[J]. Bio-Medieal Materials and Engineer- ing, 2014, 24(2).. 1517-1526. 被引量:1
  • 3Marsden A L, Bazilevs, Y, Long C C, et al. Recent advances in computational methodology for simulation of mechanical circulatory assist devices[J]. Wiley In- terdisciplinary Reviews-Systems Biology and Medb cine, 2014, 6(2).- 169-188. 被引量:1
  • 4Bakouri M A, Salamonsen R F, Savkin A V, et al. A sliding mode-based starling-like controller for implant- able rotary blood pumps[J]. Artificial Organs, 2014, 38(7) : 587-593. 被引量:1
  • 5Niklas A, Hiller K A, Jaeger A, et al. In vitro optical detection of simulated blood pulse in a human tooth pulp model[J]. Clinical oral investigations, 2014, 18 (5) : 1401-1409. 被引量:1
  • 6Cruz D O A, Pinbof T. Turbulent pipe flow prediction with a low Reynolds number type closure[J]. Journal of Non-Newtoinan Fluid Mechanics, 2003, 114(2/3).. 149-184. 被引量:1
  • 7Peng Y H, Wu Y Q, Tang X Y, et al. Numerical simulation and comparative analysis of flow field in ax- ial blood pumps[J]. Computer Methods in Biomechan- ics and Biomedical Engineering, 2014, 17(7): 723- 727. 被引量:1
  • 8Wu Huachun, Wang Ziyan, Lti Xujun. Desigh and fluent simulation of impeller for axial maglev heart pump[J]. Applied Mechanics and Materials, 2012, 195 .. 29-34. 被引量:1
  • 9Abdoli A, Dulikravieh G S, Bajaj C, et al. Human heart conjugate cooling simulation: unsteady thermo- fluid-stress analysis[J]. International Journal for Nu- merical Methods in Biomedical Engineering, 2014, 30(11) : 1372-1386. 被引量:1
  • 10Long C C, Esmaily-Moghadam M, Marsden A L, et al. Computation of residence time in the simulation of pulsatile ventrieular assist devices[J]. Computational Mechanics, 2014, 54(4): 911-919. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部