期刊文献+

加权PCA和加权LDA中距离对分类结果的影响 被引量:5

The Impact on the Classification Results from Distances in Weighted PCA and LDA
下载PDF
导出
摘要 针对多类分类问题提出了加权改进主成分分析法(WIPCA),并通过实验研究了加权主成分分析和加权线性判别分析中距离对分类结果的影响. A weighted improved principal component analysis(WIPCA) for multi-class classification problems is proposed.With experiments,we study the affect on the classification results from distances in weighted PCA and weighted LDA.
出处 《聊城大学学报(自然科学版)》 2010年第4期4-8,共5页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金资助项目(10871226) 山东省自然科学基金资助项目(ZR2009AL006)
关键词 主成分分析 线性判别分析 错分率 权函数 principal component analysis linear discriminant analysis misclassification rate weight function
  • 相关文献

参考文献8

  • 1王钰,周志华,周傲英.机器学习及其应用[M].北京:清华大学出版社,2006:13-14. 被引量:7
  • 2Fukunaga K.Introduction to Statistical Pattern Recognition[M].New York:Academic,1990. 被引量:1
  • 3Lotikar R,Kothari R.Fractional-step dimensionality reduction[J].IEEE Trans Pattern Anal Mach Intell,2000,22(6)1623-627. 被引量:1
  • 4Loog M,Duin R P W,Haeb-Umbach R.Multiclass linear dimension reduction by weighted Pairwise Fisher criteria[J].IEEE Trans pattern Anal Mach Intell,2001,23(7):762-766. 被引量:1
  • 5Price J R,Gee T F.Face recognition using direct,weighted linear discriminant analysis and modular subspaces[J].Pattern Recognition,2005,38(2):209-219. 被引量:1
  • 6Liang Y X,Gong W G,Pan Y J,et al.Generalizing relevance weighted LDA[J].Pattern Recognition,2005,38(11):2217-2219. 被引量:1
  • 7梅长林,范金城编..数据分析方法[M].北京:高等教育出版社,2006:286.
  • 8崔燕,范丽亚.分类问题中投影方向与分离超平面法方向的比较[J].聊城大学学报(自然科学版),2009,22(2):1-2. 被引量:6

二级参考文献8

  • 1Christopher J, Burges C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, (2): 121-167. 被引量:1
  • 2邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2006. 被引量:5
  • 3Ye Jieping, Ji Shuiwang, Chen Jianhui. Multi-class Diserimiant Kernel Learning via Convex Programming[J]. Journal of Machine Learning Research, 2008, 9: 719-758. 被引量:1
  • 4Torkkola K. Linear Discriminant Analysis in Document Classification[C]. Proc. IEEE ICD Workshop Text Ming, 2001. 被引量:1
  • 5Baudt G, Anouar F. Generalized Discriminant Analysis Using a Kernel Approach[J]. Neural Computation, 2000, (10) : 2 385-2 404. 被引量:1
  • 6Mika S. Kernel Fisher Discriminants[M]. Berlin:PhD thesis, University of Technology, 2002. 被引量:1
  • 7张玉川,张作泉.支持向量机在股票价格预测中的应用[J].北京交通大学学报,2007,31(6):73-76. 被引量:15
  • 8柳回春,马树元.支持向量机的研究现状[J].中国图象图形学报(A辑),2002,7(6):618-623. 被引量:63

共引文献11

同被引文献40

  • 1Munder S, Gavrila D, An experimental study on pedestrian classification [J]. IEEE Transactions on Pattern Analysis and Machine In- teUigence 2006(11):1 863-1868. 被引量:1
  • 2Minh Hoai Nguyen, Fernando de la Torte. Optimal feature selection for support vector machines Pattern Recognition, 2010, 43, 584-591. 被引量:1
  • 3Scholkorpf B, Smolar A. Learning with kernels Support Vector Machines, Regularization, Optimization, and Beyond[M]. MIT Press, Cambridge, M A, 2002. 被引量:1
  • 4Sun Y. Iterative, relief for feature weightingz theories, and applications[J]. IEEE Transactions on Pattern Analysis and Machine In- telligence, 2007, 29(6) :1035-1 051. 被引量:1
  • 5Mehmet Fatih Akay. Support vector machines combined with feature selection for breast cancer diagnosis[J]. Expert Systems with Ap- phcations, 2009, 36, 3 240-3 247. 被引量:1
  • 6Park C H, Park H. A comparison of generalized linear discriminant analysis algorithms[J]. Patter Recognition, 2008, 41:1083-1097. 被引量:1
  • 7Duda R, Hart P, Stork D. Pattern classification[J], second ed., New York: wiley, 2000. 被引量:1
  • 8Krzanowski W J, Jonathan P, Mccarth Y W V, et al. Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data[J]. Applied Statistics, 1995, 44 (1 !): 101-115. 被引量:1
  • 9Ye J, Xiong T. Null space versus orthogonal linear discriminant analysis[J]. Proceedings of the 23rd international conference on Machine learning, 2006, 1073 - 1080. 被引量:1
  • 10Ye J, Janardan R, LI Q, et al. Feature extraction via generalized uncorrelated linear discriminant analysis [J]. Proceeding International Conference on Machine Learning, USA, ACM, 2004, 69: 895-902. 被引量:1

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部