期刊文献+

广义估计方程与多水平logistic回归模型在临床纵向数据分析中的应用及比较 被引量:3

Application and comparison of generalized estimation equation and multilevel logistic regression model in analyzing clinical longitudinal data
下载PDF
导出
摘要 目的探讨广义估计方程和多水平模型的应用与临床纵向研究以解决个体重复观测数据内部的相关性问题。方法根据临床纵向实例数据的特点,拟合因变量为二分类的广义估计方程和多水平模型,并与一般logistic模型比较。结果广义估计方程和多水平模型的分析结果与一般logistic模型不同。由于未能考虑个体内重复观测数据的相关性,一般logistic模型错误显示临床分期与近期疗效相关,而广义估计方程和多水平模型分析结果则显示相关无统计学意义。经分层分析也未发现临床分期与近期疗效的关联。结论广义估计方程和多水平模型都能有效地考虑重复观测数据内部相关性并能处理有缺失值的资料。与多水平模型相比,广义估计方程的参数估计较为稳定,可有效的估计各解释变量的效应。 Objective To explore the application of Generalized Estimation Equation (GEE) and multilevel model in clinical longitudinal data to solve the problem of internal correlation of repeated measurement data. Methods Based on the characteristic of a clinical repeated measurement study, GEE and Multilevel logistic Model were applied and results was compared to that of a general logistic model. Results The results of GEE and multilevel model are different from that of general logistic mod- el. False positive results of logistic model are caused by ignorance of intra-individual correlation of repeated measurement. Con- clusion Both the GEE and Muhilevel Model efficiently considers the intra-individual correlation and also can deal with the missing value. The parameter estimation in GEE was more robust than multilevel model, and it can supply the effect size of covariates.
出处 《中国医院统计》 2010年第4期308-311,共4页 Chinese Journal of Hospital Statistics
关键词 纵向数据 广义估计方程 多水平模型 Longitudinal data Generalized estimation equation Multilevel model
  • 相关文献

参考文献10

  • 1余松林,向惠云编著..重复测量资料分析方法与 SAS 程序[M].北京:科学出版社,2004:256.
  • 2Zeger S, Liang K, Albert P. Longitudinal data analysis for discrete and continuous outcomes[J]. Biometrics,1986,42(1) :121-130. 被引量:1
  • 3Goldstein H. Multilevel statistical models[ M]. 3nd Edition. Oxford University Press,2003. 被引量:1
  • 4Goldstein H,李晓松.多水平统计模型[M].2版.成都:四川科学技术出版社,1999. 被引量:1
  • 5杨珉主编..医学和公共卫生研究常用多水平统计模型[M].北京:北京大学医学出版社,2007:199.
  • 6Zeger S, Liang K, Albert P. Models for Longitudinal Data: A Gener- alized Estimating Equation Approach [ J ]. Biometric, 1988, 44 ( 4 ) : 1049-1060. 被引量:1
  • 7Pan W. Akaike' s information criterion in generalized estimating e- quation[ J]. Biometrics. 2001,57 ( 1 ) : 120-125. 被引量:1
  • 8罗天娥,赵晋芳,刘桂芬.累积残差在广义估计方程模型诊断中的应用[J].中国卫生统计,2009,26(4):387-390. 被引量:5
  • 9赵振,潘晓平,张俊辉.广义估计方程在纵向资料中的应用[J].现代预防医学,2006,33(5):707-708. 被引量:28
  • 10Goldstein H, Rasbash J. Improved approximations for multilevel mod- els with binary responses[ J]. Journal of the Royal Statistical Society, 1996,159(3) :505-513. 被引量:1

二级参考文献17

  • 1高燕宁,蔡文玮,周纪芗.广义估计方程GEE1与纵向资料的回归分析[J].数理医药学杂志,1994,7(2):118-123. 被引量:8
  • 2徐勇勇,陈长生,曹秀堂,夏结来,赵清波,鱼敏.医学与卫生统计资料的系统结构数据[J].中国卫生统计,1995,12(5):12-15. 被引量:16
  • 3Liang KY,Zeger SL. Longitudinal data analysis using generalized linear models. Biometrics, 1986,73 : 13-22. 被引量:1
  • 4Lu JC, Chen D, Zhou WX. Quasi-likelihood estimation for GLM with random scales. Journal of Statistical Planning and Inference,2006,136 (2) :401-429. 被引量:1
  • 5Lipsitz SR,Kim K, Zhao L. Analysis of repeated categorical data using generalized estimating equations. Statistics in Medicine, 1994,13 ( 11 ) : 1149-1163. 被引量:1
  • 6Park T. A comparison of the generalized estimating equation approach with the maximum likelihood approach for repeated measurements. Stat Med, 1993,12 ( 18 ) : 1723-1732. 被引量:1
  • 7Pan W. Akaike's information criterion in generalized estimating equations. Biometrics,2001,57( 1 ) :120-125. 被引量:1
  • 8Hardin JW, Hilbe JM. Generalized estimating equations. Boca Raton, FL : Chapman and Hall/CRC Press,2003. 被引量:1
  • 9Zeger SL,Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics, 1986,42 ( 1 ) : 121 - 130. 被引量:1
  • 10Lin DY,Wei LJ,Ying Z. Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika, 1993,80:557-572. 被引量:1

共引文献31

同被引文献20

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部